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Abstract—In this paper, we study the statistical distribution of
the accumulated polarization-dependent loss (PDL) in a recircu-
lating loop. The distribution is studied both via numerical simula-
tions and with analytical theory and very good agreement is found
between the two. In addition, we have experimentally obtained the
probability density distribution for the PDL and, even in this case,
we find good agreement with the predicted one. The mean accu-
mulated PDL is found to grow linearly with the number of circu-
lations N in contraposition to a straight-line system. Moreover, the
statistical distribution tends to become uniformly distributed as N
is increasing. Finally, the statistics of the PDL for a recirculating
loop, when considering small values of PDL, is found to be equal
to the statistics of the differential group delay for recirculating
loops.

Index Terms—Optical fibers, optical fibers polarization, po-
larization-dependent loss (PDL), polarization-mode dispersion
(PMD), recirculating loop.

I. INTRODUCTION

I T is well known that single-mode optical fibers (SMF)
support two distinct orthogonal polarization modes. Nor-

mally, the attenuations of these two modes are identical. This
means that the total attenuation of the fiber can be considered
insensitive to the polarization state at the fiber input [1]. But
optical links are made up of more than simple fibers and usually
different components are required, i.e., couplers, isolators, fil-
ters, multiplexers, and amplifiers. All these components present
indeed a small anisotropy and are subject to polarization-
dependent losses (PDL) that eventually will affect the system’s
performances. This is analogous to the situation present for
the polarization-mode dispersion (PMD) that is well known
to introduce severe system penalties at high bit rates. In this
respect, the importance of evaluating the global PDL of a
system link, arises straightforwardly.

A first notable result that immediately occurs when consid-
ering polarization-dependent losses, is that the total PDL of a se-
ries of concatenated elements is usually different from the sum
of each single PDL-element contribution. The reason has to be
ascribed to the fact that the polarization sensitive axes of the
single components are not always necessarily aligned with each
other; therefore, the resulting total PDL depends on the relative
orientations of the PDL axis at each connection [2].
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But what are the values of the PDL for typical optical compo-
nents? Usually, components like isolators, couplers, and Erbium
doped fiber amplifiers (EDFAs), can have a PDL up to 0.3 dB,
but this values are strongly dependent on the environmental con-
ditions (i.e., stress and/or temperature), with fluctuations of the
order of 0.1 dB. This uncertainty and the fact that we can have, in
general, a randomized alignment between the relative axis ori-
entations of the single PDL elements, suggest the importance in
finding a statistical description of the total accumulated PDL, in
order to have a prediction of the global attenuation statistics.

Studies in this direction, after the first seminal work of Gisin
[1], were recently published and the total accumulated PDL for
an optical communication system is found to be Maxwellian
distributed (when expressed in decibels) with the accumulation
of the mean PDL growing linearly with the system length [3],
[4].

Things get even more interesting and complicated when PMD
is present in the system, a situation that is quite often the norm
in a real link. In this case, the total concatenated PDL fluctuates
in time or with changes in wavelength [2]. This implies that
the resulting power fluctuations along the link, can introduce
a nonnegligible deterioration in the optical signal-to-noise ratio
(OSNR), affecting the total accumulated PDL distribution [5].

But even the PMD distribution is in fact altered by the pres-
ence of the PDL, for the reason that the interplay between the
PDL and the PMD is quite subtle as evidenced by Gisin et al.
[6], making their contribution not separable [7]–[9]. In essence
what is happening is that the combined presence of PMD and
PDL may introduce fluctuations larger than those estimated by
root mean square rules. This was recently confirmed both by
simulations [10] and experimentally [6], [11].

For all the fore-mentioned reasons it is clear in final instance
that nowadays there is a strong actual need to study the distribu-
tions of the PMD and the PDL, both combined and separately.
Unfortunately, when we come to the issue of studying statis-
tical properties of straight-line optical links, we immediately
face the problem that it is not easy to access and/or reproduce
sufficiently long links. Moreover it is not realistic to imagine to
have controls on each single links’ component parameters, like
PDL, EDFA, PMD, etc. A natural way, and less expensive, to
reproduce on the laboratory table an optical fiber communica-
tion link, consist in considering a recirculating loop [12]. This
was done quite frequently in the past and even today it is a quite
standard way to emulate long links. But, due to the periodicity
of the system, polarization phenomena like for example PMD
(and PDL, as it will be demonstrated in the paper) are quite dif-
ferent from the one present in an optical fiber link. In fact the
distribution of the PMD can be found unrealistically distributed
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in loops in which no inter-loop polarization decorrelation exist
[13], [14]. This problem can give rise to misleading phenomena
that are not present in real straight-line systems, but are instead
intrinsically related to the loop periodicity.

We investigated this behavior in detail in a recent work [14],
focusing on the probability distribution function of the differen-
tial group delay (DGD) in a loop. We obtained both numerically,
theoretically, and experimentally the probability distribution of
the DGD, and we found that as the number of circulations in-
crease, the probability density function (pdf) of the DGD ap-
proaches a uniform distribution.

Concerning the PDL, an analysis of the evolution of the
signal’s state of polarization (SOP) was recently done [15],
[16] for the case of a loop, in which polarization-dependent
losses are present. It was found indeed that even the PDL
plays a major role in the performances of the loop, and in
determining the evolution of the signal’s SOP. In particular
the polarization state evolves in a spiral way on the Poincaré
sphere with different types of spirals, each one associated with
different systems performances [15].

Regarding the more general problem of determining the sta-
tistical distribution of the PDL in a recirculating loop, no sys-
tematic study was ever undertaken up to now, and this is the
actual object of study of the present work.

Hereby we present both a theoretical, a numerical, and an ex-
perimental study of the statistical distribution of the accumu-
lated PDL in a recirculating loop. After this introductory pre-
amble, in Section II, we introduce first the concept of PDL,
and then we determine via numerical simulations the PDL sta-
tistical distribution. In addition we demonstrate a theoretical
model capable of an analytical explanation of the PDL distri-
bution, showing that this distribution coincides with the numer-
ically calculated one. In Section III, we describe the setup used
to make the measurements and we present and discuss the ob-
tained results. The good agreement between the experimental
data and the theoretical, confirms the validity of our model and
of the numerical simulations.

II. THEORY

Let us review briefly the definition and properties of polar-
ization-dependent loss. The PDL of an optical component is de-
fined as the ratio of the maximum over the minimum optical
transmission coefficient , of the component. In
terms of the (unit length, dimensionless) Stokes vector of the
light , the transmission coefficient for a PDL element can be
expressed as

(1)

where the scalar denotes the polarization independent power
transmission, and the vector denotes the polarization-de-
pendent power transmission (note that this relation essentially
reflects the first row of the Mueller matrix of the PDL el-
ement [17]). Thus the max/min transmissions are given by

, and the PDL (in linear units) is given by

PDL (2)

The vector is directed in the direction of maximum trans-
mission (minimum PDL) [18]. Expressed in decibel units the
PDL is equal to

PDL (3)

One may define a PDL vector as the ratio between the polar-
ization-dependent and independent losses, i.e., as in-
troduced in [1]. However, we believe it is valuable (both from
a physical and as we will see also mathematical point of view)
to keep both the polarization-dependent and independent parts
separated, and consider the properties of them both.

A. The Concatenation Rule

We will first consider the concatenation rule for two PDL
elements following each other. The transmission is assumed to
be given by (1) with and in the respective elements.
The corresponding Jones matrices can be written as

(4)

and similar for by replacing the indices. Here is the Pauli
spin vector [1], is the unit matrix, and the vector is a unit
vector. The relation to the transmission coefficients and de-
fined above, can be written as and .
With these definitions we are ready to compute the concate-
nation rule. Assuming the total transmission Jones matrix is

so that the light hits element 1 first, then the
corresponding transmission is , where the
polarization independent transmission is

(5)

and the polarization-dependent transmission vector is given by

(6)

We believe this is the first time the PDL concatenation rule is
given in the separated form, which can be quite valuable. The
concatenation rule given by Gisin [1] is found from this result
by defining for and using the above
(5), (6).

In most cases of practical interest in fiber communications,
the PDL is rather low, and this concatenation rule simplifies
considerably. For example, if the PDL of the two concatenated
elements are equal to each other and less than 3 dB, then the
ratio between the polarization-dependent and the polarization
independent transmission of the elements
is less than 0.33, and the two last terms in (5), (6) contribute
with less than 10% and can be neglected. In such a situation the
concatenation rule simplifies to

(7)

(8)

or, in terms of the PDL vector, . This is ob-
viously very straightforward to generalize to a case with many
small PDL elements, which then will be the vector sum of the
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individual PDL vectors. It follows that the polarization inde-
pendent losses accumulate as a product, just as conventional
scalar transmission coefficients. The PDL vector concatenation
rule is a very important result also for the statistical proper-
ties of the PDL vector. In fact, since a similar concatenation
rule holds for the PMD vector, we can directly map many of
the results for the PMD vector to the PDL vector case. For ex-
ample, for a large number of randomly oriented PDL-vectors,
the length of the PDL-vector will be Maxwellian distributed and
its average will scale with the square root of the number of el-
ements. Moreover, since the PDL is approximately pro-
portional to the length of the PDL vector up to around 6 dB,

, then will obey the same sta-
tistics as the differential group delay (DGD) in a random PMD
fiber. This has been noted previously by a number of authors,
e.g., [3], [4].

B. The Circulating Loop Case

The case of the PMD statistics in a circulating loop was re-
cently investigated [14] both theoretically and experimentally,
but we reproduce it here in the PDL-case for convenience. In
a circulating loop, the transfer matrix for the PDL will be re-
peated each lap, after having undergone a random polarization
change, modeled by a random Jones matrix. We call this Jones
matrix , since in the laboratory it corresponds to a polar-
ization controller. In Stokes space this polarization change will
correspond to a random rotation of angle , around a rotation
unit vector . The above concatenation rule can now be applied
to obtain the total PDL vector after N laps. To simplify this dis-
cussion, we project the PDL vector of one lap, along and
perpendicular to the rotation vector , which then gives

(9)

(10)

where is the angle between the PDL vector of one lap, and the
rotation vector . After N laps, the components of the accumu-
lated PDL vector will be

(11)

(12)

The case of , is a bit special; the length of two ran-
domly oriented vectors will be distributed as a linear function
[19]. For N large, the parallel component will dominate, so that

and the pdf of will be approximately equal to
the PDF of , which is determined by the PDF of

. It is well-known that the PDF of the projection of a con-
stant-length, randomly directed vector on a given vector (such
as the -component of a random vector, or as in our case, the
-component of the -vector) is uniformly distributed (here

“randomly directed” means uniformly distributed over all direc-
tions in 3-space). Hence the PDF of will, for large values of
N, be uniformly distributed. The average of the squared PDL

vector after N laps is also straightforwardly computed; by aver-
aging (11), (12). This gives us

(13)

(14)

To compute the average of the perpendicular compo-
nent, we use the fact that the rotation angle has the PDF

; [20]. Thus the average
length squared of the PDL vector after N laps is given by

(15)

Since the PDL is linearly proportional to the length of the PDL
vector in the regime we consider, the above conclusion for the
modulus of the PDL vector will also hold for the PDL .

C. Numerical Simulations

Our recirculating loop can be modeled as a polarization rota-
tion along a selected arbitrary axis, followed by a PDL element
(we assume in our model that no PMD is present in the loop). In
a Jones matrix representation, the polarization rotation can be
described by a Jones matrix , which in a general form can
be written as

Changing and , we can emulate the behavior of any loop
transfer function.

For what concerns the PDL element, it can be simply repre-
sented by a Jones matrix

where corresponds to the minimum transmission (
is assumed to be 1), with PDL . The
total transfer matrix of the loop can hence be expressed
as

We want to study the probability density distribution of the accu-
mulated PDL as a function of the number of circulations inside
the loop. This implies we do not limit ourselves to the case of
just one loop, but we consider an arbitrary number of circula-
tions N. Because of the periodicity of the recirculating loop, the
accumulated total transfer matrix is equal to

In order to calculate the probability distribution for the different
number of recirculations, we have to calculate the accumulated
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Fig. 1. Numerical simulations: probability density distribution for the accumulated PDL  , normalized to the PDL loop value  , for different number of
recirculating loops (2–10). The total number of different loop configurations is equal to 10 . A box chart is shown on top of each inset. The vertical lines in the
box denote the 25th, 50th, and 75th percentage values. The error bars denote the 5th and 95th percentage values. The square symbol in the box denotes the average
of the data.

PDL value corresponding to a large number of possible PC con-
figuration that uniformly scramble the Poincarè sphere. This can
be obtained, providing the angles and have the following
probability distribution functions [20]

Concerning the calculation of the PDL, in accordance
with Heffner [21] the accumulated PDL value is equal to

, where correspond to the eigenvalues of
. By writing in the form one

may show that , as was used above.
The statistical nature of the accumulated PDL is thus deter-

mined examining ensemble (i.e., different PC config-
urations) and for each ensemble calculating the corresponding
PDL values. In Fig. 1 is shown the probability density distribu-
tion for the accumulated PDL , normalized to the PDL loop
value , for a different number of recirculating loops (2–10).
When the probability distribution of is a linear func-
tion, in accordance with what found in [2] for the case of a con-
catenation of two PDL elements, and in [19] for two PMD el-
ements. For larger N, the distributions tends to get uniform as
evidenced by the box chart shown on the top of each distribution.
This is in good agreement with the above theoretical discussion.

With regards to the simulations, two things are worth to be
mentioned. First, as stated at the beginning, in our model we
did not consider any PMD element in the loop. In fact simula-
tions (not presented here) show that for small values of PMD,
the PDL distribution results not to be affected by it (at least for
the number of recirculations here considered). Second, when
high values of PDL ( 3 dB) are considered, the probability
distribution will start to deviate from the one obtained for low
PDL values. This is also in consistence with the fact that the
vector-sum-concatenation rule is no longer valid in such a sit-
uation. Here, however, we are on the safe side, as we consider
values of PDL in our experiment, always less than 3 dB.

III. EXPERIMENTAL

A. Setup

The setup of the experiment is shown in Fig. 2. Three acusto-
optical switches (SW) are present in order to control the loop. A
narrowband DFB laser (1550 nm) is used as a light source, and
three different linear SOP are selected by rotating a half wave-
plate (HW) and a quarter waveplate (QW). The lightwave is then
amplified through an Erbium doped fiber amplifier (EDFA) be-
fore passing through switch SW1 that controls the filling of the
loop.

The basic principle of the optical loop is the following [12].
With the transmitter switch (SW1) closed and the loop switch
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Fig. 2. Experimental setup for the recirculating loop. DFB distributed
feedback laser, PC polarization controller, APC computer controlled PC, P
polarizer, HW half waveplate, QW quarter waveplate, SW switch, JMA Jones
matrix analyzer, PDLE polarization-dependent loss emulator.

(SW2) open, half of the light is launched into the loop, through
a 3-dB coupler. SW1 is kept closed for a time until the loop
is filled. Then switch SW1 is opened and SW2 is closed and the
light is allowed to circulate for a certain time that corre-
sponds to N circulations of the loop. The state of the switches
is then changed again and the experiment repeats. The extract
switch (SW3) is opened with different timing with respect to
SW1 and SW2 in order to extract the different pulses (i.e., for
how many times a pulse is allowed to recirculate) from the re-
circulating loop.

As shown in the setup, different optical elements are present
in the loop: a computer controlled polarization controller, a
single mode fiber, an amplifier, a PDL emulator, a bandpass
filter, and a coupler. The computer controlled polarization
controller (APC) allows to mthe total Jones matrix of the loop.
The 12-km SMF fiber acts as a delay line for the loop. The
EDFA compensates for the power loss of each recirculation
and its gain is set equal to the total loop loss. In order to avoid
as much as possible any power step variation inside the loop,
the frequency of the loop was set such that after N circulations,
the loop is immediately filled with another pulse . In this
way the EDFA gain remains constant and the loop emulates
correctly the response of a chain of EDFAs. The variable PDL
emulator (PDLE) consists of an open beam launcher/collimator
with a tilted glass plate inserted in between. Fresnel calcula-
tions relates the tilting angle of the plate with different values
of PDL. The optical bandpass filter (OBF; )
centered on the DFB laser’s wavelength, reduces the amplified
spontaneous emission noise (ASE) of the EDFA, that will
otherwise grow at each recirculation. Finally, the 3 dB coupler
couples the light in and out the recirculating loop.

The PDL measurement principle (Jones matrix method) is
based on the method of Heffner [21]. The method consist in
measuring the polarization response of the device under test,
to three different input SOP at a fixed wavelength. The PDL
of the device under test (DUT), defined as in (3), is equal to

, where correspond to the eigenvalues of ,
with J the Jones matrix of the DUT. In our measurements we
select three different linear states of polarization. After passing

Fig. 3. PDL of the loop ( ) as a function of different polarization settings
for the APC. Bold solid lines indicate the average PDL; thin lines indicate
the average PDL plus/minus one standard deviation �. On the right panel, the
obtained probability density distribution for the PDL is shown. The bold line
corresponds to the best fitting probability density Gauss function (� = 0:06)
with PDL= (0:27 + = � 0:10) dB.

through a polarizer P, three linear SOP are obtained at 0 , 45
and 90 with each other, by rotating of 0 , and 45 the quarter
waveplate QW and the half waveplate HW, alternatively. The
output Stokes vectors are determined at the exit of SW3, and
the Jones matrix of the recirculating loop and the corresponding
PDL, are finally computed.

B. Results and Discussion

The probability density distribution of the accumulated PDL
is obtained by repeating the following procedure. We first make
measurements from two up to ten circulations in the loop, with
the APC uniformly scrambled between the measurements. The
PDL is measured 20 times for each polarization setting

rejecting the data outside one standard deviation from the
average (typically 2–3). One thousand data (each one at a dif-
ferent polarization setting) are then measured for each number
of circulations through the loop. From this data the probability
density distributions are finally determined.

Before proceeding with the experiment, we initially tested the
APC to see if it generates random uniformly distributed SOP
on the Poincaré sphere. To do this, we generated a random se-
ries of voltages opportunely distributed, and we measured for
1000 different settings, the distributions of the Stokes parame-
ters. The results evidenced that the Stokes parameters were all
uniformly distributed, confirming the goodness of the scram-
bling procedure.

Another aspect we have to consider is that the polarization
scrambler APC we use introduces a setting dependent PDL.
This implies that the PDL of the loop is a function of
the different polarization settings of the APC. The distribution
of the PDL values for the APC is found to be Gaussian (when
expressed in decibels), centered at 0.27 dB and with standard
deviation equal to 0.1 dB.

Considering the nonnegligibility of this value, we set the PDL
emulator at a value quite larger compared to the intrinsic PDL
value of the loop. In Fig. 3 are plotted the PDL values of the
loop as a function of the different polarization controller
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Fig. 4. Experimental: probability density distribution for the accumulated PDL  , normalized to the PDL loop value  , for different number of recirculating
loops (2–10). The gray bars represent the experimental data with a total number of measurements equal to 1000. The bold line corresponds to the theoretical pdf.
Experimental error bars are within the graphical resolution. Statistical error bars are not shown for clarity reasons. On the top of each inset is shown a box chart
calculated on the experimental data.

settings. The bold solid line indicates the average PDL; the thin
lines indicate the average PDL plus/minus one standard devia-
tion . On the right panel is shown the obtained probability den-
sity distribution for the PDL. We assumed as a theoretical distri-
bution a Gaussian probability distribution function and we then
performed a goodness-of-fit Chi-squared test, a test commonly
used to compare observed and theoretical (i.e., expected or as-
sumed) frequencies. The low value for the reduced (0.06)
confirms that the data could be well described by an assumed
Gaussian probability distribution function (bold line, in the right
panel) centered at 1.20 dB, with a 0.10-dB standard deviation.

After having determined (first circulation, ), we
proceed as before switching out, using the extract switch SW3,
the recirculating pulse in which we are interested. The proba-
bility density distributions for the accumulated PDL , nor-
malized to the PDL loop value are shown in Fig. 4 for dif-
ferent numbers of recirculating loops . The gray
bars represent the experimental data with a total number of mea-
surements equal to 1000. The bold line corresponds to the the-
oretical pdf obtained by convolution of the density function we
found via numerical simulations and the Gaussian distribution
function shown in Fig. 3. Both the experimental and the theoret-
ical histograms, are sampled with the same bin width histogram

parameter. As clearly seen from the figure, the agreement be-
tween the experimental and the theoretical results is excellent,
confirming the validity of the model.

As mentioned in Section II-C the probability density distri-
bution for the PDL is found to be equal to the one for the DGD.
For comparison, in Fig. 5 are shown the experimental DGD
probability distributions from another loop measurement [14].
Note the strong similarity between the distributions in Fig. 4 and
Fig. 5, clearly showing that PMD and PDL follows the same
distributions. One difference between the two theoretical pdfs
is that the falloff of the PDL at high values is slower than for the
DGD, and we attribute that to the Gaussian distribution of the
PDL values. Simulations with constant PDL values show steep
falloff, similar to the PMD case.

It is interesting to calculate the average value of the nor-
malized accumulated PDL as a function of
different recirculating loops. The data are shown in Fig. 6. The
filled triangles corresponds to the experimental data and are in
good agreement with the theoretical ones (open circles). Hence,
the accumulated average PDL increases linearly with the
number of recirculations through the loop. This is in contrast
to a randomized straight-line transmission link, for which
the expectation value of the PDL grows as the square-root of
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Fig. 5. Experimental: probability density distribution for the accumulated DGD � , normalized to the loop value � , for different number of recirculating
loops (2–7). The gray bars represent the experimental data with a total number of measurements equal to 2000. The bold line corresponds to the theoretical pdf.
Experimental error bars are within the graphical resolution. Statistical error bars are not shown for clarity reasons. � = 1:6 ps.

Fig. 6. Average normalized accumulated PDL (h = i) as a function
of the number of recirculating loops. Open circles, calculated from theoretical
pdf. Filled triangles, experimental data. Dot–dashed line, asymptote. Thin line,
analytic behavior for a scrambled loop. In the inset is reported the deviation of
the theoretically calculated total average PDL from the asymptote, as a function
of the number of loops.

the link length (thin line) [3]. The dash-dot line in the figure
indicates the asymptote toward which the data go, with an
increasing in the number of loops. This is emphasized in the
inset of Fig. 6, where the difference in percentage between the
theoretical values and the linear ones, is plotted as a function of
the number of loops.

Another parameter that is interesting to extract from the prob-
ability distributions is the root mean square normalized accu-

mulated PDL . The values obtained
for the different number of laps are shown in Fig. 7 (filled tri-
angles). The bold line is the theoretical fit of the data using the
analytic formula [see (15)]

From the fit we obtain a value for the loop
PDL in complete accordance with
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Fig. 7. Root mean square normalized accumulated PDL
 ( h( = ) i) as a function of the number of recirculating loops.

Filled triangles—experimental data. Bold line—theoretical fit of the data using
the analytical formula. Dashed line—asymptotic behavior. Thin line—analytic
behavior for straight-line randomized link.

the value (average of the Gaussian distribution) as measured
independently for the first loop.

To note that in the loop the amount of measured PMD is found
to be negligible, in agreement with the assumption made for the
numerical simulations in Section II.

We note finally that for high values of N, the deviation of
the experimental data from the theoretical ones, start to be quite
important as evidenced by the experimental data for the tenth
loop (last inset of Fig. 4). This can be ascribed to the pres-
ence of a residual, not filtered, ASE into the loop; contribu-
tion that becomes more important with the increasing number
of recirculations.

IV. CONCLUSION

We have theoretically derived the statistical distribution of the
PDL in a recirculating loop and we have found good agreement
between the theory and the numerical simulations. An experi-
mental investigation was also conducted and the measured prob-
ability density distribution is in very good accordance with the
predicted one. We found that the probability density distribu-
tion for the accumulated PDL is a linearly increasing function
for two circulations through the loop. For an increasing number
of circulations, the PDL approaches instead a uniform distribu-
tion. We found also that for recirculating loops the mean accu-
mulated PDL grows linearly with the number of circulations N,
in contraposition to a straight-line optical system. For a recircu-
lating loop, the statistics of PDL is found to be almost equal to
the statistics of the DGD.
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