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Abstract
Absorption and emission optical projection tomography (OPT), alternatively
referred to as optical computed tomography (optical-CT) and optical-
emission computed tomography (optical-ECT), are recently developed three-
dimensional imaging techniques with value for developmental biology and ex
vivo gene expression studies. The techniques’ principles are similar to the ones
used for x-ray computed tomography and are based on the approximation of
negligible light scattering in optically cleared samples. The optical clearing
is achieved by a chemical procedure which aims at substituting the cellular
fluids within the sample with a cell membranes’ index matching solution.
Once cleared the sample presents very low scattering and is then illuminated
with a light collimated beam whose intensity is captured in transillumination
mode by a CCD camera. Different projection images of the sample are
subsequently obtained over a 360◦ full rotation, and a standard backprojection
algorithm can be used in a similar fashion as for x-ray tomography in
order to obtain absorption maps. Because not all biological samples present
significant absorption contrast, it is not always possible to obtain projections
with a good signal-to-noise ratio, a condition necessary to achieve high-quality
tomographic reconstructions. Such is the case for example, for early stage’s
embryos. In this work we demonstrate how, through the use of a random
noise removal algorithm, the image quality of the reconstructions can be
considerably improved even when the noise is strongly present in the acquired
projections. Specifically, we implemented a block matching 3D (BM3D) filter
applying it separately on each acquired transillumination projection before
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performing a complete three-dimensional tomographical reconstruction. To
test the efficiency of the adopted filtering scheme, a phantom and a real
biological sample were processed. In both cases, the BM3D filter led to a signal-
to-noise ratio increment of over 30 dB on severe noise-affected reconstructions
revealing original—noise-hidden—image details. These results show the utility
of the BM3D approach for OPT under typical conditions of very low light
absorption, suggesting its implementation as an efficient alternative to other
filtering schemes such as for example the median filter.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Optical imaging represents a set of techniques to study biological processes over time,
often at the cellular and molecular levels. Until recently, optical scattering was a major
impediment to imaging samples thicker than a few hundreds microns limiting their possible
applications at the cellular level or for very small organisms’ investigations. While some new
techniques such as multiphoton microscopy (Denk et al 1990) or optical coherence tomography
(Huang et al 1991) actively or passively reject scattered photons offering therefore higher
resolution and better penetration depths, other tomographic methods such as fluorescence
molecular tomography (FMT) (Ntziachristos 2006) or mesoscopic fluorescence tomography
(MFT) (Razansky et al 2009) implement advanced mathematical models of tissue photon
propagation to reconstruct fluorescence and absorption imaging contrast at the centimeter and
millimeter scale, respectively. Both these tomographic techniques imply the formulation of a
mathematical inverse problem in analogy to the other more conventional tomographic imaging
modalities. While x-ray computed tomography (X-CT) implements straight-line integral
projections (Radon 1986), FMT and MFT rely instead on diffusive models and depending
on the light path shape, the reconstruction algorithms can involve analytical (Davis 1996),
iterative (Herman and Lent 1976), deterministic (Roerdink 1998) or stochastic (Sheng and
Ying 2005) procedures. Unfortunately, the price to pay in exchange of the deeper penetration
depth is a substantial decrease in resolution. Optical projection tomography (OPT) (Sharpe
et al 2002) is a recently introduced imaging technique which allows us to image small
biological samples, such as insects (McGurk et al 2007), embryos (Sharpe 2003) or organs
from small animals (Alanentalo et al 2008, Vinegoni et al 2010) ex vivo and at high resolution.
Its applications spread from anatomical and histological analysis (Oldham et al 2007) to
tissue proteins expression distribution (Sharpe 2003), from developmental biology to gene
functions and recently to inflammation disease studies (Vinegoni et al 2010). One of the
most attractive features of OPT is its capability to image entire biological samples up to a few
centimeters in size at very high spatial resolution. To obtain such a degree of accuracy, the
sample under investigation is made optically transparent through a chemical clearing process.
In this way, its scattering and absorption properties are highly reduced, making the light
diffusive contribution negligible. The sample is then illuminated with a light collimated beam
intensity of which is captured in transillumination mode by a CCD camera. Fluorescence
or absorption projection images of the cleared sample are taken every degree over a 360◦

full rotation in an X-CT analog fashion. Through the use of an optical imaging system with
high telecentricity, only photons travelling parallel to the optical axis are projected on the
pixels of the imaging camera. The technique therefore represents an optical analog of X-CT
and the mathematical reconstruction problem, at least for the case of absorption OPT, can be
solved in a similar fashion using the parallel-beam filtered backprojection (FBP) algorithm.
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Fluorescence tomographic absorption reconstructions in contrast utilize a Born-normalized
method that relies on a normalized transillumination approach (Vinegoni et al 2009b).

While OPT has been demonstrated for both fluorescence (Sharpe 2003, Oldham et al
2007) and molecular imaging (Vinegoni et al 2010) we here concentrate on absorption
reconstructions. Such reconstructions are valuable because they provide morphological
features in addition to the functional information acquired through the respective fluorescence
measurements; unfortunately they inevitably suffer of a reduction in the obtained image quality
due to different physical limitations. In fact the chemical clearing process while providing for
both light scattering removal and index matching, at the same time often leads to a negligible
absorption coefficient in the treated sample. As a result, the transmitted optical signal will not
fill the dynamic range of the CCD camera and because the signal-to-noise ratio (SNR) of an
image depends on both the power of the true signal and the power of the noise, the acquired
image will therefore present a very low SNR. The main disadvantages of working with such
low SNR images reflect first in a loss of all the anatomical features embedded within the noise
and second in the noise propagation during FBP, which make the reconstructions not suitable
for further processing.

One approach to reduce the noise component consists in increasing the number of
acquisitions per projection while taking the average. The drawbacks are twofold: first, this
strategy increases the total acquisition time limiting all instances of high-throughput imaging,
and second a prolonged illumination can lead to the bleaching of the fluorescence signal that
will reflect on the eventual concomitant fluorescence reconstructions.

In this paper, we propose an alternative approach focusing on the implementation of a high
performance filter based on a block matching for 3D collaborative filtering (BM3D) (Dabov
et al 2007) for absorption OPT image quality improvement. Specifically, we deal with the
removal of the noise contributions that are due to the random fluctuations superimposed on
the noise-free images. Note that in this study the CCD noise source contribution was assumed
to be normally distributed, a condition easily obtainable with common lamp illuminators due
to the sample high transparency. To test the performances of the BM3D filter for OPT, we
used a phantom with specifically designed optical properties; this feature allows for a better
testing of the filter effects under controlled SNR conditions. After the filter characterization
we applied the algorithm for the case of a biological sample (mouse embryo), and the obtained
reconstructions were compared with the corresponding histological sections. In addition a
comparison with a standard filter such as the median filter was also used in support of the
BM3D filter image improvement.

2. Material and methods

The experimental setup is shown in details in figure 1. A white light source beam (HL250-AY;
AmScope), after passing through a beam expander and a combination of one or two interference
filters, was used to illuminate the sample under investigation. In one configuration, only one
filter (D525/50 m; Chroma, VT) centered at 525 nm and with a narrow full width at half
maximum (FWHM) of 50 nm was present. In the other arrangement, a combination of a
short-pass (FES0650; Thorlabas, NJ) and a long-pass (FEL0450; Thorlabas, NJ) filters was
used in order to select a broadband (about 200 nm) of the optical spectrum. In addition
filters with different optical densities (NDxxx; Thorlabs NJ) were used in order to keep the
CCD values 10% below saturation. A beam expander with a combined two-lenses Galilean
telescope (Thorlabs, NJ) and a diffuser (10DIFF-VIS; Newport, CA) were employed to make
the source homogeneous over the sample’s field of view. In order to collect the projections,
the sample was rotated over 360◦ by way of a rotational stage (PR50; Newport, CA). The
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(a)

(b) (c)

Figure 1. (a) Experimental setup. WLS, white light source; Sh, shutter; BE, beam expander;
F, front sample band pass filters; S, sample; ODF, neutral optical density filter; TL, telecentric
lens; CCD, imaging camera. (b) The imaged animal embryo is embedded in an agarose cylinder
for rotational imaging. (c) The imaging phantom consisted of an agarose cylinder with radially
diffused red ink.

unitary step of rotation was equal to 1◦ with an absolute accuracy of 0.05◦. Images were taken
with a high resolution (1392 × 1024 pixel) 12 bit camera (Pixelfly QE; PCO Germany).

To test the filter we imaged both a phantom and a whole body mouse embryo as well.
The phantom allowed us to control the effects of the filtering process while the mouse embryo
provided for a real-life biological sample.

The phantom consisted of a pure agarose cylinder designed in order to provide images
with different degrees of dynamic range and SNRs. This is a necessary feature in order to
compare the reconstructions obtained from the BM3D-filtered projections acquired under the
low SNR condition (figure 2(f)), with the reconstructions calculated starting from the high
SNR images (figure 2(c)). A cylinder with a diameter of 8 mm was fabricated with a 1%
agarose gel in which red india ink was diluted. Once solid the phantom was dehydrated in
ethanol and cleared by immersion in a BABB solution (1:2 benzyl alcohol, benzyl benzoate
ratio). Due to the porosity of the agare, the dye molecules diffused slightly within the entire
cylinder creating a radially diffusion gradient. Because the ink presents an absorption peak
at around 520 nm (see figure 2(b)), the presence of a narrow bandpass optical filter centered
at 525 nm and placed in front of the illumination lamp (figure 2(a)) spectrally selects the
component of the white light spectrum that is measured in transillumination mode and that is
the most absorbed by the sample, creating a projection image with a high dynamic range and
a high SNR. The replacement of the filter with a combination of a long-pass and a short-pass
filters (figure 2(d)) increases instead the bandwidth of the white light spectrum detected by
the CCD giving rise to an image with a reduced dynamic range and low SNR that mimics a
biological sample imaging condition (i.e. very small absorption coefficient).

In this way it is possible to image the same phantom and artificially modify the dynamic
range and the associated SNR of the acquired images while keeping constant the images
background and without changing any acquisition parameters (such as CCD’s gain, integration
time, etc) but only acting on the illumination lamp intensity by way of neutral optical density
filters. Reconstructions obtained starting from high SNR projections were then compared to
reconstructions calculated using the data post-processed with the use of the BM3D filter. Note
that while the total amount of absorption changes when switching from one configuration
to another, the overall profile remains the same allowing for a direct comparison between
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(a) (b) (c)

(d) (e) (f)

Figure 2. Comparison between the two imaging modalities (a), (b) exploited to obtain high
(c) and low SNR (f) projections. The use of a narrow band pass filter BPF1 centered at 520 nm
and with 50 nm bandwidth (b) allowed to image only in the high absorption condition leading to
a high dynamic range within the acquired projections (c). Instead, the use of the combination of a
short-pass SP and a long-pass LP filters (d) led to a higher bandwidth (e) with a reduced dynamic
range (f).

low and high SNR reconstructions. Finally, because in real-world case situations we are
particularly interested in rendering the morphological features that are present within the
biological samples, we therefore decided to disperse absorptive microparticles in the agarose
phantom to mimic the typical image high frequency components present in common biological
tissue. With this approach, sharp edges are introduced within the phantom and both low and
high frequencies in the image power spectrum can be simultaneously simulated.

For what concern the biological sample, a mouse embryo at 10.5 days of development
after fertilization was fixed in a 4% PFA (paraformaldehyde) solution at 4 ◦C temperature
for 1 h followed by embedding in a 1% agarose gel and successively dehydrated through a
series of immersions in 20–100% ethanol solutions. The clearance process was performed by
immersion in a BABB solution for 2 days. At the end of the chemical treatment, the sample
presented very low absorption with associated low SNR projections.

3. Denoising filter

In optical projection tomography, transillumination images are typically acquired at high light
source intensities to minimize the camera noise contribution. For these levels of illumination,
the camera noise can be modeled as normal distributed, additive, with zero mean and with
unknown variance σ 2. The captured image z(x) is therefore equal to

z(x) = y(x) + n(x), (1)

where x are the image’s pixels spatial coordinates, while y(x) and n(x) represent the noise
free image signal and the camera noise, respectively. Although σ 2 is unknown, a number
of accurate methods are available in order to estimate such a parameter from noise affected
images. Herein we employed a MAD wavelet domain estimation method on detail coefficients
(Donoho and Johnstone 1994, Hampel 1974).
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To reduce the amount of noise present in the images, we used a high performance spatially
adaptive Block matching 3D filter (BM3D) which is valid for normally distributed noise
removal. BM3D is based on the assumption that a noise-free image spectrum of similar image
fragments group can be better approximated as a combination of a few spectrum elements
than a single image fragment (Katkovnik et al 2009). This guarantees that the signal energy
is distributed to a small amount of coefficients, leading to a high signal sparse representation.
Real images cannot always be well represented by a fixed 2D transformation and due to their
huge varieties such transformations can only achieve sparse representations of certain patterns.
BM3D filtering permits us to enhance the sparsity representation of an image by grouping,
increasing the noise removal while at the same time preserving image features like localized
details (e.g. sharp edges) and it has recently been demonstrated to produce very high-quality
images (Dabov et al 2007), with few image artifacts. This is a critical factor for an OPT
implementation because due to the FBP operation, any image distortion could result amplified
in the final processed data (Walls et al 2005).

The basic operating principle behind the non-local filtering technique is based on the fact
that 3D transformations of high correlated data can reach a highly sparse representation by
grouping similar 2D image fragments into a stack in a 3D manner to form a so-called group.
The signal is therefore transformed into a new domain where it can be well approximated as a
linear combination of a few basis elements. In this way, the separation between the true signal
and the noise components can be easily achieved by amplitude thresholding. This so-called
transformed signal shrinkage preserves the few high-magnitude transform coefficients which
should be related to the noise-free image power spectrum components, while at the same time
discarding the low-magnitude ones which are essentially due to the noise. This approach is
known as collaborative filtering (Dabov et al 2007) and is graphically illustrated in figure 3.
Herein the whole noise clearance process involves the application of the BM3D filter to each
projection image and the application of a ramp filter prior to the computation of the filter
backprojection reconstruction as illustrated in figure 4.

3.1. Algorithm

The BM3D algorithm was introduced by Dabov et al and is schematically illustrated in
figure 4(a). More in-depth details can be found in Dabov et al (2007). The first step is
composed of several cascade blocks: grouping by a pre-filtered version of match blocking
is performed on the noisy image in order to build a 3D stack of similar image fragments;
discrete cosine transformation (DCT) is then used to map the blocks into a domain where
the signal is sparse; shrinkage by hard thresholding is employed to attenuate the noise; the
inverse 3D transform is used to map the processed data back to the image space returning
noise-free image fragments; finally fragments are then repositioned to their original positions
and since they may overlap, they are fused together by a weighted average (aggregation). The
resulting image is named ‘coarse’ or ‘basic estimate’. Step 2 is similar to step 1 and the major
modification is in the way the groups are actually filtered. A Wiener filter is used during
this second phase and the ‘coarse estimate’ image obtained in step 1 is exploited as a pilot
spectrum. After Wiener filtering, ‘inverse 3D’, ‘repositioning’ and ‘aggregation’ processing
blocks are sequentially performed as in step 1 but with different weights. More details about
the theory of the BM3D filter can be found in the original paper of Dabov et al (2007) and a
brief summary is reported in the appendix.

After BM3D, in order to obtain the absorption maps, a 1D ramp filter is applied to
the image rows which are orthogonal to the rotation axis before applying the backprojection
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Figure 3. Graphical representation of the hard thresholding collaborative filter acting on a noise
image.

reconstructing algorithm; this processing leads to the final noise-free reconstruction estimation
shown in figure 4(c).

The filtering code is written in the Matlab code and is in part based on the code made
available at ‘http://www.cs.tut.fi/∼foi/GCF-BM3D/#ref software’.

4. Results

The noise removal filter was tested first on a phantom as described above and applied directly
on the acquired projections before obtaining any reconstruction via FBP (figure 4(d)). In order
to do this, we tomographically reconstructed the absorption maps of the cylindrical phantom
starting from the images collected at high values of SNRs (i.e. narrow bandpass filter inserted,
figure 2(a)).

An axial reconstruction with an absorption profile taken along the cylinder’s diameter AA’
(dashed line) is shown in figure 5(a) as a reference. As can be clearly seen, both low and high
frequency components are in place. The low frequencies correspond to the phantom’s radial
decreasing optical absorption (shown in detail at the bottom of the reconstruction), while the
high frequencies components are due to the presence of the sharp dots corresponding to the
dispersed microparticles. The absorption map is then used as a reference in order to understand
if the filter processing scheme removes any essential feature present in the noisy images.

Figure 5(b) shows instead an axial tomographic reconstruction taken at the same height
of the phantom as in (a) with a wide bandpass filter inserted in the optical path (figure 2(e)).
Due to the reduced SNR, the noise degrades the image severely making it very difficult to
obtain quantitative information and to distinguish any underlying structure. Figure 5(c) shows
the same axial tomographic reconstruction as in (a) and (b) but this time obtained after the
application of the BM3D filter to each single projection. In the resulting reconstruction,
the circular edge can be seen to be well preserved and it is worth to note the very low

http://www.cs.tut.fi/protect $
elax sim $foi/GCF-BM3D/#ref_software
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(a)

(b) (c)

(d)

Figure 4. (a) Block scheme of the BM3D filter. The first step allows us to compute a coarse
noise-free image. The second step employs the coarse estimate in the grouping and in the Wiener
collaborative filtering. Example of a specimen projection before (b) and after (c) BM3D noise
removal. (d) Block scheme for the absorption OPT backprojection algorithm.

oversmoothing. Both the tomographic reconstruction and the absorption profile are very
close to the reference one (figure 5(a)). For comparison, we show in figure 5(d) an axial
reconstruction obtained after the application of a 2D median filter. By using this filter, the
results are similar to the BM3D case but with a pronounced oversmoothing. In fact, while
the absorption profiles are comparable, the axial reconstruction appears faded. This is more
evident when considering the high frequency components of the image. Figure 6 shows a
magnification of the axial reconstructions of figures 5 (a), (c) and (d) over an area where
several microparticles are present for the high SNR (a), the BM3D filter (b) and the 2D
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(a) (b)

(c) (d)

Figure 5. Axial tomographic reconstructions of the cylindrical phantom with red ink inserted. All
reconstructed sections (a)–(d) are orthogonal to the phantom’s axis and are all taken at the same
height. The absorption profiles along the cylinder’s diameter (dashed red lines) are here presented
at the bottom of each reconstruction. (a) High SNR reconstruction obtained by way of the use
of a narrow spectral optical band pass filter (figure 2(a)) for dynamic range increasing. (b) Low
SNR reconstruction obtained with the configuration as indicated in figure 2(d); the circular shape
is visible because of image range rescaling; the attenuation profile, scaled as in (c) and (d), is
completely hidden by the noise. Reconstructions obtained after BM3D (c) and 2D median filter
denoise (d) applied on the low SNR dataset. Horizontal and vertical scales’ units are cm and cm−1

respectively.

median filter (c) case, respectively. It is evident that the phantom’s perimeter is sharper in
figure 6(b) than that in figure 6(c). For the median filter in addition, all spots corresponding
to the absorptive microparticles are strongly attenuated and wider rendered. Worth to note are
the artifacts present over the reconstructed spots on the median filtered data. A ring-like shape
seems to be visible around the filtered spots, a phenomenon occurring while processing noisy
data. Moreover, ring dimensions are correlated to the size of the filter window (i.e. the wider
the filter window, the larger the ring diameter).

The filter performance was then tested on a biological specimen (i.e. low dynamic range
within the projection image), specifically a mouse embryo. The sample, when chemically
cleared, presented very low absorption optical properties, a feature quite common in early
stages embryos. This contributes in making it very difficult to obtain absorption OPT
reconstructions making it necessary to post-process the acquired data with different filtering
options.

Figure 7 shows a comparison between filtered and unfiltered data for a mouse
embryo. Figure 7(a) indicates the level at which the reconstructed sections were computed.
Figures 7(b)–(d) correspond to the absorption reconstructions of the noisy, the BM3D filtered
and the median filtered projections, respectively. As clearly evinced from the reconstructions,
the BM3D filter was able to reduce the noise without distorting the original features of the
noise-free image.

Sharp edges and indistinguishable embryo’s structures are preserved and further enhanced.
Moreover, no apparent artifacts were introduced by the filtering procedure. Looking at
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(a) (b) (c)

Figure 6. Comparison between a high SNR (a), BM3D filtered (b) and median filtered (c)
reconstruction. Details (spots and sharp edges) are well preserved with BM3D filtering but not
with the median filter approach.

the median filtered results, the noise has been removed as well but at the expenses of the
high frequency image components, which have been hardly attenuated. For this reason
the resulting image, like in the phantom’s case, appears severely blurred. A histological
section at approximately the same level is provided for a further comparison indicating a high
morphological correlation with the BM3D filtered reconstruction.

In order to quantitatively characterize the action of the BM3D filter on the tomographic
reconstructions we compared the high SNR absorption maps with the reconstructions obtained
from the low SNR projections with and without BM3D filtering (figures 5(c) and (b),
respectively). In addition, to test its goodness with respect to other common filters, we
compared the BM3D with a classic 2D median filter (figure 5(d)). The median filter window
size was selected in such a way to obtain the same standard deviation of the error component for
both filtered reconstructions. This is defined as the deviation of the absorption map, obtained
from the BM3D filtered projections, from the absorption maps obtained from the projections
with high values of SNR, after proper rescaling. The window was found to be 15 × 15 pixels
wide.

For what concern the biological specimen, because there is no a priori knowledge of the
absorption profile we computed the median filter window size using the MAD wavelet domain
method on detail coefficients (Donoho and Johnstone 1994, Hampel 1974), applied to both
filtered reconstructions, as an error estimator. In a similar fashion as for the phantom’s case,
specimens’ images were separately filtered with a standard 2D median filter for comparison.
The filter window size (11 × 13 pixels wide) was chosen in such a way to obtain an error
of the median filtering approximately equal to the one of the BM3D case. Filtering times
were approximately 5 s for the median and 17 s for the BM3D filters. These values refer
to only one projection (1392 × 1024 pixels) as processed by a Core 2 Duo processor at
2.53 GHz. A complete (360 projections) BM3D filtering requires approximately 1 h 40 min,
while a FBP tomographic reconstruction takes approximately 8 h. Using graphic accelerated
cards (Vinegoni et al 2009a) such a computational time could be reduced to a few seconds.
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(a)

(b) (c)

(d) (e)

Figure 7. Comparison between different filters for the reconstruction of a mouse embryo.
(a) Tomographic reconstruction of a mouse embryo obtained with absorption OPT using the
BM3D filter. The plane indicates the position of the axial slice taken into account for the filters’
comparisons. (b) Native reconstruction by parallel-beam FBP (360 projections and 1◦ step angle)
without noise suppression. (c) Reconstruction obtained after BM3D filter denoising. The filter
leads to very good reconstruction, preserving the high frequencies of the image spectrum, contrary
to the 2D median filter shown in (d). (e) Histological section at approximately the same height.
All reconstructions are presented with a negative colormap for visual details enhancing. White
bar, valid for (b)–(e), corresponds to 0.4 mm.

Table 1 summarizes the estimated SNRdB and the noise standard deviation for both the
phantom and the mouse embryo for the cases of the noisy reconstructions and for those having
applied the median and the BM3D filter, respectively. The BM3D filter was able to reduce
the noise standard deviation by about 38 times in the phantom and over 30 times in a real
imaged biological sample. The SNR increased about 30 dB after filtering for both cases.
Although both the BM3D and the median filters are able to drastically reduce the noise, the
major asset of the BM3D filter relies in its ability to preserve the images’ features as illustrated
above.
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Table 1. Estimated noise standard deviation and SNRdB for both the phantom and mouse embryo.

SNRdB STD

Phantom Embryo Phantom Embryo

Noisy −2.09 9.14 0.3855 0.8395
Median filter 28.45 37.48 0.0115 0.0270
BM3D 29.50 39.72 0.0102 0.0269
Improvement 38 30 – –

5. Conclusions

In this study we demonstrate the use of a random noise removal algorithm to increase image
quality reconstructions in absorption optical projection tomography. The block matching 3D
filter when applied separately to all optical projections was able to increase the signal-to-noise
ratio over 30 dB while preserving original features.

The significant improvements obtained in the images’ quality make this filter highly
suitable for absorption OPT specifically in cases where little absorption and low dynamic
range within the projection image are present. This is particularly true for early mammalian
embryos. Due to the long computational time necessary to filter all the projections, future
work will be aimed at implementing the filter on a low-cost parallel processing card making it
suitable for high throughput imaging (Vinegoni et al 2009a). Because the fluorescence signal
can be very faint, particularly for those cases where the CCD integration time has to be kept
low in order to speed up the acquisition process or to reduce the photobleaching, we also
expect the filter to significantly improve the fluorescence OPT reconstructions.
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Appendix

The BM3D algorithm processes noisy images z(x)where the only source of noise n(x) is
due to the stochastic nature of the photon flux recorded by the CCD camera. For the case
of absorption OPT, we can model this type of noise as white, normal distributed, additive,
with zero mean and with unknown variance σ 2. Because of the additive property, the noisy
image can then be written as the sum of two components: the true image y(x) and the noise
contribution n(x),

z(x) = y(x) + n(x). (A.1)

The BM3D filter is based on the assumption that squared fragments of an image called blocks
(Zx) each one with a fixed size N × N present mutual correlation with each other. Due to such
a correlation each block can therefore be sparsely represented in a transform domain once
stacked together in a 3D array (Z).

In order to apply the BM3D, the original image is then divided into fixed size blocks
named ‘reference blocks’ (ZxR

) which are separately processed by the filter itself.
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Block matching 3D in its more complex form works in two steps which can be further
divided in sub-steps.

In the following subsections, the superscripts ht (hard thresholding) is used within step 1
and wie (Wiener filtering) within step 2 to improve clarity.

Step 1

Grouping by block matching. An initial step of block matching (BM) is first used to find
the blocks within the noisy image that are highly correlated to the reference block ZxR

. In
order for the BM to be sufficiently robust against the noise, it is necessary to apply a hard
threshold pre-filter to all fragments in the 2D transform domain prior to determining the level
of similarity which is related to the distance d(ZxR

, Zx)defined as

d
(
ZxR

, Zx

) =
∥∥Ψ′ (Tht

2D

(
ZxR

)) − Ψ′ (Tht
2D (Zx)

)∥∥2

2(
Nht

)2 . (A.2)

When two blocks are similar d is close to zero, while higher values of d imply a lower
correlation. Here, Ψ′ is the hard thresholding pre-filter, Tht

2D is the normalized 2D transform
(e.g. DCT) and Nht is the number of elements in a row or column of the blocks (blocks are
squared). The result of the BM operation is a set Sht

xR
of coordinates of all blocks similar to

the reference one ZxR
.

Collaborative hard thresolding. Similar noisy blocks are then stacked in a 3D array Zht with
the reference block as the first element and the others positioned as the distance increases, and
a hard thresholding collaborative filtering is performed in a 3D transform domain:

Ŷht = T−1,ht
3D

(
�

(
Tht

3D

(
Zht

)))
. (A.3)

Here, Ŷht is the corresponding Zht stack after � hard thresholding filtering and Tht
3D (with

T1,ht
3D its inverse) is the normalized 3D transform (e.g. DCT). The filtering is then repeated

for all reference blocks of the whole image. The key point of the collaborative filtering is the
mutual correlation among the blocks that leads to a sparse signal representation once mapped
into a 3D transform domain. Because of correlation noise-free signal energy gather in a few
coefficients while the uncorrelated noise does not. This leads to higher coefficients values for
the noise-free signal and a simple hard thersholding filter is able to efficiently separate it from
the noise.

Repositioning and aggregation. In order to reform the image out from the filtered blocks, the
stacks are split for repositioning to the original position and then fused by a weighted average.
To each stack of blocks is then assigned a different weight ωht

xR
defined as

ωht
xR

=
{

1/σ 2Nhar, if Nhar � 1

1, otherwise,
(A.4)

where Nhar is the number of non-zero coefficients in the transform domain after hard
thresholding.

During the aggregation each block is then multiplied by its relative weight and the final
result is an image named basic or coarse estimate (ŷcoarse(x)).

Step 2

Each sub-steps in step 2 is a modified version of the steps occurred above and they are
recursively applied to improve the final result.
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Grouping by block matching. BM is here applied to the basic estimate image in order to find
similar block with higher accuracy. Since in the coarse estimate (ŷcoarse(x)), the noise level
is reduced with respect to the original image, and the block distance is replaced with a much
simpler relation,

dwie
(
Ŷ coarse

xR
, Ŷ coarse

x

) =
∥∥(

Ŷ coarse
xR

− Ŷ coarse
x

)∥∥2

2

(Nwie)2
, (A.5)

where Ŷ coarse
xR

and Ŷ coarse
x are the reference block and the compared ones, respectively, in the

coarse estimate image, and Nwie is the block size. The result of the BM is a set Swie
xR

of
coordinates of blocks which are similar to the reference one Ŷ coarse

xR
. Grouping is also applied

to the noisy image using dwie
(
Ŷ coarse

xR
, Ŷ coarse

x

)
information in order to obtain stack Zwie.

Collaborative Wiener filtering. After block stacking, a Wiener approach is employed for
collaborative filtering, instead of using a hard thresholding approach as in step 1. The
attenuating coefficients are defined as

Wwie =
∣∣Twie

3D

(
Ywie

coarse

)∣∣2∣∣Twie
3D

(
Ywie

coarse

)∣∣2
+ σ2

, (A.6)

where Wwie are the attenuating weights used by the Wiener filter, and Twie
3D is the normalized

3D transform of the stack Ŷ
wie
coarse computed on the coarse estimate image. Final filtering is

computed on the Zwie stack in a Wiener fashion:

Ŷwie = T−1,wie
3D

(
Wwie (

Twie
3D (Zwie)

))
. (A.7)

Repositioning and aggregation. After repositioning and aggregation, we obtain the final
image estimate ŷfinal(x). Weights for aggregation in step 2 are defined as

ωwie
xR

= ‖W2‖−2
2

σ 2
(A.8)

Essentially, the aggregation is similar as in step 1 with all quantities replaced now with those
computed in step 2.
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