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1. Introduction

Intravital optical imaging systems with different re-
solution scales are being increasingly used for both
experimental as well as clinical purposes [1]. In re-
cent years, macroscopic fluorescence reflectance op-
tical imaging (FRI) has received particular attention
due to the availability of improved targeted and acti-
vatable agents for early detection of cancer and in-

flammation. To achieve deeper imaging (a few milli-
meters into tissue), light in the near infrared (NIR)
region is usually preferred since it penetrates tissue
better and minimizes autofluorescence contributions,
yielding higher SNR images. To date, several reports
have demonstrated the power of NIR microscopy in
experimental mouse imaging [2] and more recently
also in human patients [3]. During typical cancer re-
sections, tissue margins are evaluated postopera-
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Current intraoperative imaging systems are typically not
able to provide ‘sharp’ images over entire large areas or
entire organs. Distinct structures such as tissue margins
or groups of malignant cells are therefore often difficult
to detect, especially under low signal-to-noise-ratio con-
ditions. In this report, we introduce a noise suppressed
multifocus image fusion algorithm, that provides detailed
reconstructions even when images are acquired under
sub-optimal conditions, such is the case for real time fluo-
rescence intraoperative surgery. The algorithm makes
use of the Anscombe transform combined with a multi-
level stationary wavelet transform with individual thresh-
old-based shrinkage. While the imaging system is inte-
grated with a respiratory monitor triggering system, it
can be easily adapted to any commercial imaging system.
The developed algorithm is made available as a plugin
for Osirix.

Intraoperative detection of small malignant fluorescent
cells using the proposed noise suppressed multifocus im-
age fusion system. Red/Yellow circles indicate small
groups of malignant cells.
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tively and patients undergo additional procedures
should the margins be positive. Alternatively, real-
time frozen sections are obtained during surgery but
are often reserved for complex (major abdominal,
brain tumor resections) or specialized (melanoma)
surgeries. Both approaches naturally suffer from
sampling errors, due to poor and incomplete visuali-
zation of tissue margins.

When imaging entire organs or large areas of tis-
sue, resolution and imaging time have to be carefully
balanced. While a large field of view (FOV) is useful
for panoramic overviews, high magnifications are
necessary for high-resolution imaging. The latter re-
quires the area of interest to be in focus. Resected
areas (often <1 cm) rarely present uniform morphol-
ogy or a flat surface. As a result, simultaneous infor-
mation from different focal planes of the imaging
system is difficult to obtain. Images are consequently
blurry, which in turn makes small structures such as
groups of malignant cells, impossible to discern.
Moreover, weak fluorescence intensities and/or the
need for short integration times to avoid motion arti-
facts during in vivo imaging, create noise that ulti-
mately affects the quality of the fluorescence signal.

There are two possible solutions to overcome the
focal problem. The first is to use telecentric lenses,
which can provide large focal depths [4]. The disad-
vantage of this approach is the very low collection
efficiency these optical systems provide making them
unsuitable for in vivo fluorescence imaging. The al-
ternative solution is to use multifocus fusion algo-
rithms, which typically involve collecting a stack of
images, acquired by varying the focal plane of the
imaging lens. This ensures that every feature within
the field of view falls within the focal plane of at
least one image in the stack. In-focus structures are
then detected from individual images and used to re-
construct a final “all-in-focus” image.

Since its original report nearly 30 years ago [5], a
variety of white light, multifocus fusion approaches
have been proposed [6–9]. Despite the advances it
still has been difficult to achieve clear images of
whole organs under low signal-to-noise ratio (SNR)
conditions. Herein, we present a noise suppressed
fusion algorithm, used in combination with an opti-
cal imaging setup, that enables triggered acquisition
of intravital fluorescence images and provides wide
field, in-focus images.

During bright field or fluorescence image acquisi-
tion, the noise suppressed fusion algorithm selects
the sharpest components in each image acquired at a
specific focal plane, to render a single all-in-focus im-
age. Since the algorithm is able to provide intermedi-
ate results (i.e. after collecting the n-th image, the
algorithm is able to update the reconstructed image
in real time using information provided up to that
point), it is not necessary to wait for all images to be
acquired before post-processing. This is particularly

important during surgery, where time is critical. The
noise suppression component of the algorithm also
allows short acquisition times, overcoming artifacts
arising from breathing motion. Since the proposed
system is already integrated with a respiratory mo-
nitor triggering system, it is suited to most in vivo
imaging situations. The algorithm’s noise suppression
component can also be used during ex vivo imaging
where it is most useful for low SNR applications.
Finally, the resulting “all-in-focus” images can be
further processed, e.g. through automatic segmenta-
tion, to delineate tissue margins or quantifying ana-
tomical areas.

2. Methods

2.1 Experimental

In this study, we used both a commercial (OV110,
Olympus) as well as a custom-built fluorescence re-
flectance imaging system. While the two systems
were equivalent in terms of optical characteristics
(i.e. cameras, objective lens, emission and fluores-
cence filters), the image sensor (charge-coupled de-
vice; CCD) in the custom-built system was externally
triggerable. This option is particularly useful for
imaging organs affected by respiratory motion. A
scheme of the experimental setup is illustrated in
Figure 1. A halogen lamp was used to provide white
light illumination and fluorophore excitation. To
achieve uniform illumination of the sample, light was
first guided through an optical fiber bundle and then
passed through a scattering element. Images were

Figure 1 (online color at: www.biophotonics-journal.org)
(a) Imaging setup. CCD: charge-coupled device; ExF: exci-
tation filter; EmF: Emission filter; IL: imaging lens; D di-
chroic; RM: respiratory monitor; TL: trigger line; AL: ac-
quisition line. (b) During imaging, the optical imaging
plane is translated along the vertical direction and images
are collected across the entire sample.
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collected in epi-illumination mode using a zoom lens
and recorded using the CCD camera. The height of
the optical imaging plane was varied via a transla-
tion stage; a stack of images was thus acquired, with
each image presenting a different area in focus with-
in the region of interest. To minimize motion arte-
facts, a respiratory monitor was used to trigger the
acquisitions at the end of the expiration phase. Dur-
ing acquisition, images were processed in real time.

For in vivo imaging, mice (n ¼ 3) were anesthe-
tized with isoflurane (2% in 2 L/min oxygen) and
injected intraperitoneally with 106 LS174T cells in
50 mL PBS. After 2 weeks, mice were injected via tail
vein with 30 mg of anti-A33 antibody (MAB 3080,
R&D Systems) labeled with VivoTag 680 (Perkin
Elmer), to target the tumor cells. Two days later,
mice were re-anaesthetised, following which the ab-
dominal cavity was exposed and tumors were im-
aged and resected. Images were taken using an
OV110 fluorescence imaging system (Olympus) with
a 200 ms exposure time and a 0.89X objective. Fol-
lowing in vivo imaging, mice were sacrificed.

2.2 Algorithm

The simplest way to compute image fusion is to em-
ploy a pixel-by-pixel approach using the source
images. This technique, however, is limited by arti-
facts, primarily due to noise, which act to reduce the
contrast of the reconstructed image. Several ap-
proaches for image fusion have been proposed to
date, each of which are designed to work in the
space domain [10], the transform domain [11] or
both [12]. The first attempt to fuse images in the
transform domain consisted of exploiting the gaus-
sian pyramid structure [5]. Subsequent attempts have
gone on to exploit domains such as the discrete
wavelet transform (DWT) [11]. Transform domain
fusion works by combining images, after they have
been transformed, by processing the obtained coeffi-
cients. This DWT method has likewise been proven
effective in image fusion, but has the drawback of
being a non stationary transformation. Consequently,
a translated version of the signal does not in general
lead to a translated version of the wavelet coeffi-
cients. As a result, artifacts can occur in the resulting
fused image when images are not perfectly regis-
tered, as is the case when sample movements occur.
A variation of the DWT is the stationary wavelet
transform (SWT), designed to overcome the lack of
translation-invariance [12–13].

Under normal imaging conditions, low noise
images can be obtained by adjusting the exposure
time and/or averaging the image sequences. These
strategies, however, can have severe limitations, par-
ticularly when acquiring in vivo images of either en-

dogenous fluorescent reporters or in vivo adminis-
tered fluorescence contrast agents; these usually have
considerably low signal intensity. Moreover, due to
respiratory and cardiac motions, it is impossible to
acquire images with integration times greater than
or equal to the motion’s period without inducing
blurring artifacts. Short integration times are there-
fore necessary. However, when averaging over multi-
ple images, the total acquisition time for each frame
is increased. As a result, images with low SNRs are
inevitable. In the present study, we thus explored the
feasibility of an alternative solution to the problem,
by integrating a fusion algorithm with a noise sup-
pression processing scheme. Specifically, we adopt a
multi-level SWT, which we combine with spatial-fre-
quency information and a noise suppression process
integrated within the fusion. Here, unlike [12], sum
modified Laplacian (SML) [14] was only used to
fuse the approximation signal; the maximum selec-
tion rule was instead applied to the magnitude of the
detail coefficients.

In order to obtain the SWT decomposition, high
and low-pass filters were applied to the data, in a
similar manner to DWT but without decimation. As
described in [12, 15], a signal f(x) can be projected
at each level of the decomposition through a scaling
function j(x) (low pass filter) that is iteratively
translated and dilated. Discrete approximation of
the wavelet coefficient at level j translated by k is
defined as [12, 15]:

cj;k ¼ h f ðxÞ; jj;kðxÞi ð1Þ

with

jj;kðxÞ ¼ 2�jjð2�jx� kÞ ð2Þ

By defining j(x) as the wavelet function, the detail
signal coefficients at level 2j are [12, 15]

wj;k ¼ h f ðxÞ; 2�jjj;kð2�jx� kÞi ð3Þ

Since the scale function has the property [12, 15]
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details can be computed by [12, 15]
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where g(n) is a high pass filter. Thus so far, the for-
mulas are identical to those used for classical DWT.
Since decimation is not required for SWT, formulas
can be instead written as [12, 15]:

cjþ1;k ¼
P
n

hðlÞ cj;kþ2j l ð9Þ

wjþ1;k ¼
P

l
gðlÞ cj;kþ2j l ð10Þ

In two dimensions, the transformation is separable
and can be computed by applying both low and high
pass filters along the x and y axes, as follows [15]:

cjþ1ðx; yÞ ¼
P
n;m

hðnÞ hðmÞ cjð2jþ1m� x; 2jþ1n� yÞ

ð11Þ
w1

jþ1ðx; yÞ ¼
P
n;m

hðnÞ gðmÞ cjð2jþ1m� x; 2jþ1n� yÞ

ð12Þ
w2

jþ1ðx; yÞ ¼
P
n;m

gðnÞ hðmÞ cjð2jþ1m� x; 2jþ1n� yÞ

ð13Þ
w3

jþ1ðx; yÞ ¼
P
n;m

gðnÞ gðmÞ cjð2jþ1m� x; 2jþ1n� yÞ

ð14Þ

Such a decomposition produces sub-bands that are
equal in size to the original image due to the elimina-
tion of the downsampling operation. The arising re-
dundancy is treated by recursively applying Eq. (15)
[15]
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Here, c can be interchanged with cA (the approxi-
mation coefficients) while w1,2,3 can be replaced with
cDv, cDh and cDd (vertical, horizontal, and diagonal
detail coefficients, respectively).

By iteratively applying the described decomposi-
tion process, a multilevel decomposition is obtained.
Coefficients can then be processed using the noise
suppressing algorithm. While the iterative process
leads to a redundant representation of the image at
the expense of the computational speed and memory
usage, it does not constitute a practical limitation for
typical fluorescence in vivo imaging where images
512� 512 are acquired. To note that here shot-noise

is the dominant source of noise responsible for im-
age corruption. Hence, we modelled it using a Pois-
son distribution, where the noise variance is related
to the amplitude of the measured signal [16].

In order to improve image quality, we exploited
recent advances in the numerical treatment of Shot
(or Poisson) noise; these have centered, instead of
direct Poisson data denoising [17], on the application
of a special transformation that converts Poisson
noise into noise that is approximately homoscedastic
and Gaussian distributed. The Anscombe transform
is a variance-stabilizing transformation often used
for pre-processing data prior to the application of
noise suppressing algorithms. In this transform (i.e.
y ¼ 2(x þ 3/8)1/2) [18], a random variable (x) with a
Poisson distribution is transformed into a variable
(y) with an approximately Gaussian distribution with
unitary variance (as long as imaging is not performed
under low photon count condition) and can thus un-
dergo noise suppression by shrinking the wavelet
coefficients. In our study, we chose to use the hard
universal threshold as it is simple to compute and it
is widely employed for reducing noise in the wavelet
domain. Moreover, since the SWT is redundant, the
noise coefficients are no longer uncorrelated and
thus the threshold should be varied at each level of
decomposition, as in [19]. Given that noise suppres-
sion and fusion both use the same wavelet transform,
the above-described noise suppression technique is
well suited to be integrated within the multifocus
image fusion algorithm (Figure 2). Accordingly each
image is initially transformed in the wavelet domain
and a level dependent thresholding is then applied;
fusion is subsequently computed on the retained
coefficients. As soon as the fusion is complete, the
resulting multi-dimensional signal is transformed
back using the inverse wavelet transform as well as
the inverse Anscombe transform.

Since the forward Anscombe transformation is
nonlinear, the implementation of a direct algebraic
inversion generally leads to a biased estimate [20]. If
an exact unbiased inverse is applied, however, the
occurrence of this phenomenon is drastically reduced,
especially under low SNR conditions. In our analysis,
we used a closed-form approximation [20] of the
exact unbiased inverse of the Anscombe variance-
stabilizing transformation [21]:

IcðDÞ ¼
1
4

D2 þ 1
4

ffiffiffiffi
3
2

r
D�1 � 11

8
D�2

þ 5
3

ffiffiffiffi
3
2

r
D�3 � 1

8
ð16Þ

where D is the pixel value of the reconstructed im-
age prior to inversion of the Anscombe transfor-
mation, and Ic(D) is the value obtained using the
approximated closed-form formula for the exact in-
version of the Anscombe transformation.
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Upon acquisition, each image was immediately
processed for noise suppression and fusion. The
noise suppression algorithm, which was applied in
both real time and postacquisition data, is summar-
ized in the following steps: 1) The Anscombe trans-
form is first applied to the data. 2) The sum modified
Laplacian SML is then calculated and used to pro-
cess the approximation part of the wavelet decom-
position. 3) A 5-level SWT is applied. 4) Noise sup-
pression (shrinkage) is applied to the wavelet
coefficients, using level-dependent hard thresholding.
5) The resulting approximation and detail coeffi-
cients then undergo separate processing before sub-
sequent fusion. Inverse transform of approximate
coefficients (approximation image) is fused using a
modified SML obtained by filtering the SML image
with a 3� 3 median filter and then convolving with a
Gaussian window filter (using a standard deviation
of 0.75). The modified SML provides information on
areas of the image likely in focus; here, the median
filter acts to eliminate isolated points and reduces ar-
tifacts resulting from “hot” and “cold” pixels in the
CCD camera. In contrast to the approximation co-
efficients, detail SWT coefficients are fused in the

wavelet domain using the “maximum absolute value”
selection rule. When processed in real time, these
two components can be stored while waiting for the
next image update; meanwhile, a temporary version
of the final image can be provided to the user. The
reconstruction then consists of two additional steps:
calculation of the inverse SWT for detail coefficients,
and fusion with the approximation image. The final
fused image is then obtained by applying a closed-
form approximation of the exact unbiased inverse of
the Anscombe transformation [20].

3. Results and discussion

The reconstruction algorithm was initially tested on
two phantoms designed to mimic white light and
fluorescence modes. Both phantoms were mounted
on a flat glass plate on a horizontal platform. The
plate was then tilted along one of its horizontal axes
such that, due to limited depth of focus, only one
part of the imaged phantom appeared in the focal
plane of the imaging system. Stacks of blurred
images were then acquired by moving the horizontal
platform along the vertical direction in steps of ap-
proximately 50 microns. This was necessary in order
to compare images reconstructed using the fusion al-
gorithm with images obtained from the phantoms
laying on the horizontal plane. In order to do this, a
stretching factor had to be applied to the final image,
along the tilting direction, with a factor equal to
k ¼ 1/tan(a), where a is the angle of the tilted plate
on the horizontal platform.

The first phantom consisted of a black and white
grid printed on paper and illuminated with white light
(Figure 3a–c). This pattern was chosen for its sharp
edges and flat areas, which result in high and low
frequencies respectively. As shown in Figure 3a–c,
the proposed algorithm performed well, preserving
both frequency components of the image as well as
scaling factors.

Fluorescence data fusion (Figure 3d–f) was then
tested on a second phantom, which consisted of sev-
eral capillary tubes filled with a fluorescent dye
(Cy7.5). The same imaging procedure was then fol-
lowed as for the black and white grid. As before, a
stretching correction was applied to provide appro-
priate scaling. To demonstrate that relative fluores-
cence signal counts are preserved for both images,
the tubes were filled with variable concentrations of
dye. Fusion reconstructions showed good agreement
with the original flat image. Moreover, a comparison
between cross sections taken at the same point in
both the original and reconstructed fused images in-
dicated that the relative fluorescence signal is well
preserved in the fused reconstructed images.

Figure 2 (online color at: www.biophotonics-journal.org)
Noise suppression-fusion. After acquisition, each image
was immediately processed for noise suppression-fusion.
Each image was initially transformed by the Anscombe
transform and then decomposed by the stationary wavelet
transform (SWT) into 5 levels. A level-dependent hard
threshold was applied to cAj, cDv

j , cDh
j and cDd

j bands,
which were subsequently processed separately. To cA, the
inverse SWT (ISWT) was applied and the images fused
using a weighted average (approximation image). This fu-
sion was then stored temporarily for further processing
whilst a new image was being acquired. cDh

j , cDv
j , and cDd

j
were fused using a maximum absolute value selection rule.
When the last image was being processed, cDh

j , cDv
j , and

cDd
j bands were then transformed using the ISWT to ob-

tain detail information. Approximation and detail images
were subsequently combined. Finally, the inverse An-
scombe transform was applied to the data in order to ob-
tain the final noise suppressed all-in-focus image.
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After verifying that the algorithm preserves geo-
metric features, high and low signal frequencies, and
relative intensity signals, we subsequently applied it
to small animal imaging.

The upper panel of Figure 4 shows ex vivo auto-
fluorescence images of the lower portion of the
mouse abdominal cavity, primarily focused on the
male urogenital system. The wavelength of the exci-
tation light was 488 nm, and emission light was col-
lected with a bandpass filter at 540 nm. Normally,
the trade-off between the size of the field of view
and image resolution prevents the possibility of
acquiring images of larger areas at high resolution.
In order to overcome this limitation, we acquired
12 stacks of partially-in-focus images positioned at
different points with a certain degree of overlap, and
stitched their reconstructions together with a post-
processing technique to obtain the final image. The
final image is therefore the result of two processing
techniques: the fusion of a single image stack by
the proposed algorithm (leading to all in focus tile
images), followed by the application of a tile stitch-
ing algorithm similar to that commonly used to build
panoramic images in photography. Figure 4d shows

the entire mouse abdominal area in focus, where the
major organs of the reproductive tract can be clearly
visualized at high resolution, including the seminal
vesicles (top), ductus deferens surrounding the blad-
der (center), and testes (bottom).

Figure 5 shows the in-focus reconstruction of the
heart vasculature of a mouse injected with a fluores-
cent dye (Rhodamine dextran). The probe was in-
jected in vivo via tail vein. After one minute, the ani-
mal was euthanized, and the heart ligated so as to
keep the vessels filled with the dye; the heart was then
explanted and imaged. As shown in Figure 5a–e, the
heart was very well reconstructed despite its high cur-
vature, and full in-focus images could be obtained.

The same sample was then used to demonstrate
that our algorithm performs well in the presence of
noise, a situation that typically arises when short in-
tegration times are used or when low fluorescence
signal is present. To demonstrate this important as-
pect of our reconstruction modality, we used low
SNR fluorescence images from the same dataset as
above and directly compared them with a reference
high SNR image. In Figure 5, we show reconstructed
fused images starting from a low SNR dataset using
the fusion algorithm, both with (Figure 5c, g) and
without (Figure 5b, f) noise suppression filtering. A
comparison with the fused reconstructed images,
obtained using a high SNR dataset, clearly demon-
strated that our method is far superior to a conven-
tional fusion approach, even when the final image is
filtered using a common median filter (Figure 5d, h).

Finally, we used the proposed method for in vivo
tumor detection since this would be an attractive
feature for intraoperative surgery. In order to eva-

Figure 3 (online color at: www.biophotonics-journal.org)
(a–c) Phantom grid reconstruction in white light mode. A
flat black and white grid was tilted along one horizontal
axis to produce images with only part of the grid in focus.
(a) A single frame from a stack of partial in focus images.
(b) An image reconstruction of all the in focus compo-
nents obtained from the stack of images in (a). The same
grid with no tilt was used as a reference (c). To correctly
compare the processed image (b) to the reference (c), a
stretching factor, perpendicular to the tilting axis, was ap-
plied. (d–g) Phantom tubes in fluorescent mode. (d) A sin-
gle image from a stack of fluorescent images. As for the
grid, the tubes were tilted along one horizontal axis to pro-
vide out of focus components. (e) The reconstructed fused
image. (f) A reference image acquired with zero tilting.
(g) A signal profile along one line to compare the fluores-
cent distribution of the reconstructed and reference image.

Figure 4 (online color at: www.biophotonics-journal.org)
In focus reconstructions of mouse organs. (a–b). A fused
reconstruction of the male urogenital system in the mouse
in fluorescence mode (Ex. 475/30, Em. 530/40). (c) Tiling
of partially out-of-focus images. (d) Reconstructed images
were fused together by stitching. The field of view for the
single image could thus be extended without sacrificing re-
solution, which is limited by the sensor matrix.
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luate this capability, LS174T cancer cells were im-
planted into a mouse and allowed to grow for
14 days. A fluorescent monoclonal antibody target-
ing the colon cancer associated antigen A33 [22, 23]
was then injected, which localized to the tumor over
2 days (Figure 6). During surgical separation of the
main tumor from the surrounding tissue, several re-
gions of residual cells were apparent in the margins.
As shown in Figure 6d, f, the small lesions are clearly
visible in the all-in-focus images. In the out-of-focus
images, they are not distinguishable even when

zoomed in (Figure 6c, e). Segmentation of the resi-
dual cells with size quantification could be obtained
using a Sobel filter and threshold adjustment in com-
bination with a morphological filter. This could be
useful for standardizing or quantifying resected tis-
sue.

4. Conclusion

In conclusion, we have developed a fluorescence
imaging system for intraoperative surgery that con-
sists of a numerical algorithm for noise suppression
and multifocus image fusion that is compatible with
both white light and fluorescence reflectance imag-
ing.

The method is particularly suited under sub-opti-
mal conditions, i.e. in low SNR, a situation that typi-
cally arises when imaging in vivo or in conditions
where the fluorescence signal intensity is low. We
have demonstrated its use for both ex vivo and in
vivo applications as well as its ability to highlight tu-
mor margins and metastases in mice. While here we
have implemented a multi-level SWT, other wavelet
based image fusion techniques such as the one de-
scribed in [9] could be adopted when used in combi-
nation with a noise suppression processing scheme.

The proposed fusion algorithm could potentially
have a wide range of applications, the most signifi-
cant being its likely clinical utility for intraoperative
surgery. Finally, in order to facilitate its wider use in
the community, we have implemented the algorithm
as a plug-in for Osirix [24], an open source image
software widely used in the clinical and biomedical
community (http://csb.mgh.harvard.edu/bic/down-
loads). In its Osirix implementation the plug-in
works in post-processing mode and importance was
placed on ease of use. With the number of decompo-
sition levels set to 5 and automatic estimation of
noise, no parameter adjustment or estimation is re-
quired by the user.
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Figure 5 Reconstructions at high and low SNR. (a, e) Re-
construction of the high SNR image; (b, f) Reconstruction
of the low SNR image without noise suppression; (c, g)
Reconstruction of the low SNR image after applying the
proposed algorithm; (d–h) Reconstruction of the low SNR
image with a median filter for noise suppression.

Figure 6 (online color at: www.biophotonics-journal.org)
Fluorescent all-in-focus imaging for intravital surgery. Dur-
ing intraoperative surgery, the use of all-in-focus imaging
in fluorescent mode, would enable the detection of ex-
tended tumors and small lesions within tissue margins
(d, f). Panel (c, e) demonstrates the impossibility of identi-
fying small lesions or metastases when the images are not
in focus. If small tumoral masses lie at different depths,
scanning along the axis of the microscope lens is necessary
for accurate detection. Panels (a–b) show the location of
the tumors within the mouse in white light and fluorescent
mode respectively.
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