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Intravital fluorescence microscopy, through extended penetration depth and imaging resolution, provides
the ability to image at cellular and subcellular resolution in live animals, presenting an opportunity for new
insights into in vivo biology. Unfortunately, physiological induced motion components due to respiration
and cardiac activity are major sources of image artifacts and impose severe limitations on the effective
imaging resolution that can be ultimately achieved in vivo. Here we present a novel imaging methodology
capable of automatically removing motion artifacts during intravital microscopy imaging of organs and
orthotopic tumors. The method is universally applicable to different laser scanning modalities including
confocal and multiphoton microscopy, and offers artifact free reconstructions independent of the
physiological motion source and imaged organ. The methodology, which is based on raw data acquisition
followed by image processing, is here demonstrated for both cardiac and respiratory motion compensation
in mice heart, kidney, liver, pancreas and dorsal window chamber.

W
ith the technical advances in optics and the development of novel fluorescent reporters and probes,
intravital microscopy is entering a new era of in vivo high-resolution real-time imaging, helping to
answer biological questions under physiological conditions1–4. Unfortunately, naturally occurring

periodic and random motion artifacts continue to pose one of the biggest challenges for intravital imaging5.
Image degradation by motion artifacts is directly proportional to the spatial resolution: at lower resolutions there
are fewer effects whereas motion can become the limiting factor at higher spatial resolutions. Medical imaging
techniques (e.g. magnetic resonance imaging (MRI), X-ray computed tomography (CT), and ultrasound (US))
have driven the field of motion compensation but many of the solutions are poorly adaptable to intravital
microscopy. Therefore, new methods are urgently needed to enable motion-free, high resolution intravital
microscopy.

The major sources of motion are respiration and cardiac activity, even under deep anesthesia, while other
sources such as peristalsis, muscle contraction, and slow drift can be more easily avoided or corrected. When
image acquisition is operated at a speed such that motion occurs only within certain frames, simple frame
rejection is one solution. Unfortunately acquisition at such speeds is not always possible and when it is, the
low integration time necessary to avoid image distortions, will result in poor signal to noise ratio. A number of
different motion compensation methods have been described for different applications and organs6–19. Many of
these require specific experimental setups depending on the organ of interest. Physical immobilization and
mechanical restraints (e.g. through the use of a glass cover slip), are among the most commonly employed
strategies. Despite their simplicity, the level of stabilization achieved rarely allows true high-resolution imaging.
Moreover, the applied pressure necessary to achieve a sufficient degree of stabilization can severely impact
physiological measurements. Alternative methods include active7,19 or passive8,10,11 acquisition schemes, some-
times in combination with specialized, custom-made stabilization holders. Other approaches based on image
processing are also promising as they do not require any specific setup modification. Algorithms based on motion
distortion models with constant velocity assumption20 or on Lucas-Kanade registration modeling21 are effective in
compensating in-frame motion distortions. However, because these methods are based on 2D plane motion
models, they work best in 2D, i.e. when motion is restricted within the imaging plane. When inter-frame motion
artifacts predominate, such as in high-speed acquisitions, artifacts can be successfully corrected by image regis-
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tration with realignment of the video-frame sequence and removal of
unmatched components. However, distortion-free images have to be
collected prior to imaging using high speed scanning systems18,21–23, a
solution which is not always feasible.

Here we present a new generalizable method for motion com-
pensation in intravital imaging based on image processing. The
described method, which works for periodic motion artifacts, does
not require any a priori knowledge or recording of the animal physi-
ology such as the cardiac and respiratory activity, nor information of
distortion free images. Moreover, there are no retrospective gating
or prospective triggering schemes necessary, simplifying instru-
mentation. The reconstruction algorithm is capable of providing
motion-compensated images of every organ independently of the
physiological source (or sources) of motion. We first validate the
algorithm in phantoms and then apply the method to in vivo imaging
of kidneys, pancreas, heart, and dorsal window chambers in the
mouse. Further extrapolation of the method should also be useful
for intraoperative clinical imaging where surgeons need to map
extended moving areas.

Results
In contrast to widefield microscopy techniques where image data is
acquired in one exposure via a CCD, laser scanning microscopy
(LSM) relies on sequential point-by-point excitation, scanning along
a preset path to cover the imaging field of view (Fig. 1a). In the frame
of reference of the objective, the scanning path lies along a horizontal
plane, while in the frame of reference of a moving organ it will belong
to a curved surface modulated in time by the organ’s motion com-
ponents10. The acquired image is then not representative of a physical
horizontal plane optically sectioning the organ of interest12, but will
instead present motion-induced distortions (Fig. 1a). Our motion
compensation method is based on automated recognition of distor-
tion-free areas within an acquisition sequence, which subsequently
allows reconstructions of artifact-free images truly reproducing hori-
zontal imaging planes.

As motion cycles over time, it is possible to identify a period of
minimum respiratory and cardiac movement, both at the end of
expiration and inspiration (TR) and during the diastolic phase in
the cardiac cycle (TC) (Fig. 1a). If during scanning acquisition,
breathing and cardiac activity traces are recorded and several gating
time windows coincident with TR and TC are chosen, different por-
tions (‘‘segments’’) of the acquired images coincident with the gated
windows and, free of any artifact, can then be extracted among all
collected images. The presence of a mechanical stabilizer, working as
a fixed boundary constraint, also enables reproducibility in position
at the selected temporal windows. This guarantees that all different
segments can be combined together to produce a final reconstructed
image free of any motion-induced distortions, as typically done in
sequential cardiorespiratory gating (SCG) segmented microscopy12.

While effective, this approach necessitates direct information
about the organ’s motion through the use of ECG traces and pressure
waveforms. In terms of hardware equipment, this requires a high-
speed multichannel data acquisition system, a differential signal
amplifier, a mechanical animal ventilation system or a respiration
sensor in addition to the specific function support from the micro-
scope system such as triggering function or real-time scanning tim-
ing output function. The basic idea behind the proposed method is to
automatically identify all artifact-free segments within a sequence
and combine them into a final ‘‘stabilized’’ image. The method’s basic
principle is illustrated in Fig. 1b. Here two LSM images of a beating
heart are shown. Both images present significant motion artifacts
mainly in the lower parts, while motionless areas reside in the upper
parts. We can quantify the degree of similarity between the two
images by taking the Correlation Coefficient (CC) of all the segments
that are temporally overlapping (i.e. possess the same image coordi-
nates). A CC bar graph, calculated on all segments, presents high

values (i.e. more than 0.9) in correspondence of the motionless areas
indicated by the red lines, while the other motion-distorted segments
give rise to low values of CC (high distortion). We can therefore
envision applying this procedure for an entire sequence of images
such as the one presented in Fig. 1c. Here a tumor orthotopically
implanted in the pancreas of a spontaneously breathing mouse kept
under anesthesia, is imaged. Motion distortions due to the respir-
atory activity are clearly visible in all the images throughout the entire
sequence, causing streak-like artifacts. With the help of CC bar
graphs we can manually identify in the sequence motionless seg-
ments within each image, combine them according to their time
coordinates and finally obtain motion artifact-free image reconstruc-
tions (Fig. 1d).

Obviously this ‘‘cherry-picking’’ approach is impractical when
dealing with large datasets. Fig. 2 thus illustrates the algorithm for
automated image reconstruction. During the first phase, a sequence
of multiple images Ij (j 5 1..M) is gathered. Each image Ij is then
divided in N segments Si,j (i 5 1..N). Typically, we choose N to have 8
or 16 or 32 views/segments (e.g. for a 512 3 512 image, 32 segments
with size 512 3 16 pixels). All the segments Si,j which are temporally
coincident to each other with respect to the frame scan (i.e. i 5

constant), are then collected in N groups. For each group we build
a ‘‘segment correlation coefficient’’ table Ti (MxM) obtained by cal-
culating the correlation coefficient (CC) of one segment with all the
others. The diagonal will contain the CC of each segment with itself,
giving rise to a maximum value of 1. All other components will have
different values of CC depending on the degree of similarity over the
entire sequence. In the tables, dark color indicates high values of
correlation coefficient, i.e. similarity within segments. A similarity
threshold TCC (TCC 5 0.9) is then chosen, and all segments belonging
to a table Ti with a CC value higher than TCC are chosen and a
‘‘similarity ensemble’’ Ei is built. All N ensembles Ej will contain a
number of elements ni which can be different for each individual
ensemble. But each ensemble will contain all segments within a row
of a sequence that will present the highest values of similarity and
therefore are the ones lacking any motion artifact contribution.
Starting from the first ensemble, each segment is chosen as a seed
and in the next adjacent ensemble another segment with the highest
boundary matching conditions is chosen. In this way, a path Ps

(s 5 1..p) between the ensembles is built, which will correspond to
a choice among all segments, of all the ones presenting lack of dis-
tortions and preserving boundary conditions. From the multiple
paths of each seed, the one with the highest value of total boundary
continuity is chosen as a final path. Note that multiple final paths can
be present depending on the number of stability points p within a
physiological motion cycle. For example, during ventilator assisted
respiration two distinct points (p 5 2) of minimal motion are present
corresponding to fully inflated or deflated lung, giving rise to two
different paths (P1,P2) with the corresponding two artifact-free
images. In order to automatically find the p possible seeding seg-
ments we use a K-means clustering algorithm. From all ensembles,
similar segments are grouped together in distinct clusters, and for
each cluster a representative is chosen as stability seed. A final path
for each seed cluster is then traced temporally as described above. For
each final path all segments are finally combined together to recon-
struct an artifact free image/images. Because only respiratory and
cardiac motion are present, the parameter p is equal to 2 when in
the presence of both or when cardiac motion is negligible, and to 1
when only cardiac motion is present and no respiratory activity is
present (e.g. by stopping the mechanical ventilator) or its effect is
negligible (e.g. imaging distal to the lungs). The minimum number of
images necessary to obtain a full reconstruction depends on three
parameters (integration time, image dimension, and segment size)
and their relation to temporal motion. For example, for a typical
protocol of 140 breaths per minute, an image size of 512 3 512 pixels,
and an acquisition time of 0.5 seconds, 20 images are required to
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reconstruct an artifact free image. For spontaneous breathing 5–10
images are instead required.

The fundamental limit for the new algorithm is determined by the
temporal acquisition of the single ‘‘view’’. If motion occurs on the time
scale during which the excitation laser beam traces a line, no segment
can be considered as reproducible and the proposed algorithm will

fail. It is therefore a necessary condition to have a motion free period
over which stability in the acquisition is guaranteed. This imposes a
limit in size on the generic segment, to the minimum of one line. Of
note, choosing a proper image acquisition time can circumvent this
limitation (shorter integration times and smaller image sizes imply
larger segments with respect to the total image size).

Figure 1 | Motion artifacts during laser scanning microscopy acquisition. (a) In LSM, acquisition is performed in ‘‘line-by-line’’ modality with the

excitation beam tracing a path along the imaging field of view. Cardiac and respiratory activity will therefore induce geometric distortions in the final

acquired images. The timescales of the two images are different. (b) If some degree of reproducibility in certain part of the motion is introduced, images

acquired at different time points will present ‘‘locally’’ different values of correlation. (c) Sequence of images acquired sequentially of a tumor

orthotopically implanted in the pancreas, in a spontaneously breathing mouse. Images (512 3 512 pixels) have an acquisition time of 1.6 sec. Acquisition

and source of motion are out of phase. Different colors are associated at each distinct image. (d) By combining parts of the images (segments) that present

high values of correlation coefficient, we can reconstruct a final motion artifact-free image. Here different colors were used to show how segments are

gathered from different images of the sequence. The size of these segments, which corresponds to the number of ‘‘views’’ or scanned lines, is not constant

but varies depending on the timing between the image acquisition and the minimum movement periods TR, and TC.

www.nature.com/scientificreports
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To test the effectiveness of the reconstruction method we first
imaged a biological phantom under ‘‘controlled motion’’ conditions.
(Fig. 3). A phantom consisting of a fixed heart embedded in agar and
stained with Rhodamine Lectin to visualize the microvasculature,
was fixed on a speaker membrane (Fig. 3a). The speaker was con-
tinuously driven by a current waveform presenting a high frequency

component such that the sample moved along the objective vertical
axis perpendicular to the imaging plane. In a raw LSM acquired
image (Fig. 3b) motion distortions are present in correspondence
to the speaker displacements (red boxes) while stable artifact-free
acquisition falls within temporal windows Tsg. Fig. 3c shows an auto-
matically reconstructed image using the algorithm. A comparison

Figure 2 | Automatic image reconstruction algorithm. M sequentially acquired images are divided in N patches (‘‘segments’’). A collection of all

segments (M) corresponding to the same position in the microscope frame of reference, are collected and correlation coefficient is calculated between

each view with all remaining others. A ‘‘segment correlation coefficient’’ table is then calculated for each individual segment (N). In the table dark color

represents high values of correlation coefficient i.e. similarity within segments. For each ‘‘segment correlation coefficient’’ table all views with a CC higher

then a set threshold TCC are collected giving rise to a ‘‘similarity ensemble’’ Ei. If the physiological cycle has multiple point of high stability (e.g. acquisition

during ventilation) different segments can be found within the first ‘‘similarity ensemble’’ E1 using K-means clustering and then used as seed for automatic

image reconstructions.
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with an image acquired without motion (no current) and represent-
ing the ‘‘ground truth’’ image, is shown in Fig. 3d. The reconstructed
image and the ‘‘ground truth’’ image are almost identical with a high
value of CC (Fig. 3f, 2 vs 3). This result shows that the reconstruction
methodology can, in theory, produce motion-artifact free images,
starting from distorted images, without any a priori information
regarding the motion components or the morphology of the sample
at rest.

In vivo results. We next tested the algorithm under different in vivo
imaging applications. Fig. 4a shows one example of renal imaging
using a GFP-ubiquitin expressing mouse. The mouse was anesthe-
tized and mechanically ventilated, while a tissue stabilizer was
employed in order to introduce reproducibility in the breathing
induced motion. Despite the presence of the stabilizer, motion
artifacts are evident throughout the entire sequence resulting in
severe image distortions. Using the new algorithm, automatic
reconstructions were achieved within 10–20 frames. The resulting
distortion-free image was then compared with acquisition during
static conditions. Here motion from the ventilator is eliminated
introducing a brief pause of a few seconds in duration in the
ventilator drive waveform and the axial position of the objective is
controlled in order to match the same imaging plane during
respiratory activity. Direct comparison between the dynamically

reconstructed image and the static one show a high degree of
correlation, proving again the effectiveness of the proposed method.

During a ventilation cycle, pressure-induced motion presents a
high frequency component with the organs moving at high speed
between two different relatively stationary positions followed by low
frequency components. The imaged organ will therefore move along
a vertical axis transitioning alternatively between two stationary
planes. Using the new algorithm, two different seeds can be auto-
matically identified within the temporal sequence and two motion
artifact-free images can be reconstructed corresponding to the
expiration and inspiration phases (p1, p2). An in vivo image sequence
of a liver from a GFP-ubiquitin mouse (green) perfused with
Rhodamine-dextran (red) is shown in Fig. 4c. From the images it
is evident that a transition between two stationary phases is present
during ventilation. Automatic seed extraction in combination with
the reconstructing algorithm gives rise to two images representing
two different horizontal planes p1 and p2.

When N multiple stability points are present during the acquisi-
tion of a dataset, automatic seeding extraction guarantees that N
horizontal planes free of any motion induced artifact are recon-
structed. During ventilation, two parallel planes are easily isolated
as demonstrated above. So if the imaged organ is translated (or
alternatively the objective as is mostly the case, Fig. 5a) both stability
planes will sample the imaged organ along the objective’s axis, grant-

Figure 3 | Phantom measurements for proof of principle. (a) A fixed heart stained for microvasculature (Rhodamine lectin) is moved along the

objective’s axis by a loudspeaker oscillating at a frequency of 8 Hz. (b) The acquired image presents severe motion artifacts for all segments (red boxes)

occurring in correspondence to the driving current (blue curve). Segments within a stabilized gating time windows present no artifacts and over time high

values of CC. (c) If images are acquired out of sync with the driving current, dynamically reconstructed images are automatically obtained. (d)

Comparison with images obtained from the same sample and along the same imaging plane but with the sample in static position (i.e. no current is driving

the speaker) indicated optimal correlation between the two and is proof of the validity of our method. Comparison between segments at the same position

in the microscope frame-of-reference and belonging to a ‘‘raw’’ image, a ‘‘dynamically’’ reconstructed, and a ‘‘static’’ one, show different degrees of

correlation. Segments belonging to adjacent images present a very low degree of correlation.

www.nature.com/scientificreports
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Figure 4 | Ventilator induced motion artifacts. (a) An in vivo sequence of images of a kidney from a GFP-ubiquitin mouse is shown. A comparison

between an automatically reconstructed motion artifact-free image and an image obtained with the ventilator transiently paused to eliminate residual

motion artifact indicates a high degree of correlation between the two. Red boxes indicate all the individual segments automatically collected. (b) During a

ventilation cycle, pressure-induced motion presents a high frequency component with the organs moving at high speed between two different positions of

minimal motion (black trace) with low frequency components. (c) An in vivo sequence of images of a liver from a GFP-ubiquitin mouse (green) perfused

with Rhodamine-dextrane (red). The transition from two planes of high stability is evident in the sequence. Both planes can be automatically

reconstructed using the self-seeding procedure.

www.nature.com/scientificreports
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ing the possibility to automatically reconstruct a 3D dataset without
any motion artifact. To demonstrate this concept we imaged in vivo a
tumor orthotopically implanted into a mouse pancreas, while con-
tinuously translating the objective along the axial direction. An incre-
mental step of 1.5 microns at a speed of 0.9 microns/sec was chosen.
The whole reconstructed images were then combined to generate a
3D volume (Fig. 5b).

Breathing induced motion artifacts have a broad effect on all
organs, with the degree of distortion depending on the degree of
magnification. This is evident even when imaging within the dorsal
skinfold window chamber (left panel Fig. 5c), which is typically
firmly fixed during data collection. Here motion artifacts are still
observable at high resolution but can be successfully removed
through the use of the algorithm (right panel Fig. 5c).

Cardiac excursion is another major source of motion. We there-
fore tested whether the above approach could be used to reduce
cardiac motion. An in vivo temporal sequence of acquired raw
images of a beating heart is shown in Fig. 6a. Without motion com-
pensation, there are severe image distortions as expected. In addition,
due to the anatomical proximity of the heart to the lungs, respiratory
artifacts are also substantial. Using the developed algorithm in com-
bination with self-seeding extraction, two stabilized images repres-
entative of horizontal imaging planes were easily extracted,
compensating simultaneously for both cardiac and respiratory
motion. Due to the typical short time windows over which the heart
is at a resting position, the total number of images required to obtain

a stabilized reconstruction is higher in comparison with the case of
respiratory activity only (approximately 5 times). When operating at
20 frames per second, that will reflect in a stabilized reconstruction
within 2–5 seconds.

Discussion
Here we have presented an image processing algorithm capable of
removing motion artifacts during intravital microscopy. The method
is universally applicable to different laser scanning modalities (con-
focal, two photon, SHG, etc.) and offers artifact free reconstructions
truly representative of horizontal imaging planes. Moreover, 3D
reconstructions of moving organs can be easily obtained through
algorithm iteration. The method is not reliant on the periodicity of
organ movements, a priori morphological information, or prospect-
ive triggering or retrospective gating. Rather, the method is based on
simple raw data acquisition followed by image processing, facilitated
with the use of a mechanical stabilizer. The advantages of the
approach are obvious: the method is simple to adapt, inexpensive
to implement and robust. For images 256 3 256 in size and with
2 microsecond/pixel integration time (4–12 raw images), rapid (2–5
seconds) reconstructions can be easily obtained making the tech-
nique particularly useful to study cellular interaction, drug diffusion,
and organ morphology. Listed in In Table 1, as an illustrative
example, are the minimum numbers of raw images necessary to
obtain a final artifact-free reconstruction in the presence of different
physiological motions. Values are calculated for the case of acquired

Figure 5 | 3D motion artifact free automatic reconstructions. (a) While the sample is moving along a trajectory determined by physiological activity, the

objective can be translated axially with a z-stage motion controller. (b) In a similar fashion as illustrated before, individual planes can be automatically

reconstructed. Once combined, 3D motion compensated images can be automatically obtained. (c) Motion components induced by respiration or heart

beating can even be detected in a mouse dorsal window chamber when imaging at high magnification. Here an image pre and post automatic

reconstruction is shown. Arrows indicate cells that are morphologically distorted in the ‘‘raw’’ acquired images.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 4 : 4507 | DOI: 10.1038/srep04507 7



raw images 512 3 512 pixels in size and with 2 microseconds/pixel
integration time. Ultimately, the minimum number of raw images is
dependent on the acquisition parameters and the fluorescent signal
present in the sample (i.e. concentration of endogenous fluorescent
protein or contrast agent, quantum yield, excitation power, tissue
penetration depth, etc.) such that the collection of high quality
signal-to-noise ratio images is achieved. While we describe a first

iteration, there could be further refinements. Multi-channel acquisi-
tion, for example, could be used to increase the amount of informa-
tion present in each image thus speeding up the reconstruction
process. Also the implementation of a scale invariant feature trans-
form (SIFT) algorithm could be beneficial for handheld acquisition
stabilization, where inevitable rotation and changes occur in the focal
plane, and for the case of random occurring physiological motions.

Figure 6 | Artifact free automatic reconstructions of the beating heart in vivo. A sequence of images of the beating heart is shown. Images are aligned

such that time is along the horizontal axis. The ECG trace (red curve) indicates the point where the maximum motion occurs. If only cardiac motion is

present, only segments within a specific temporal window coinciding with the end diastole will present a high degree of correlation over time. If only

breathing motion is present, segments acquired within two distinct time windows of the respiratory cycle will present high values of correlation

coefficient. If both physiological motion components are present, the probability to obtain segments with high values of correlation coefficient will be the

product of the two. By using the illustrated automatic algorithm with self-seeding, two motion artifact-free images are obtained corresponding to two

distinct planes p1 and p2. A comparison between reconstructed images and ‘‘raw’’ images is shown. All traces (ECG, ventilation) are reported for

explanatory purpose and are not considered for the automatic reconstructions provided.

www.nature.com/scientificreports
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The developed method also works for intraoperative imaging of
moving organs. Artifact-free images can be obtained while hand-free
panning, and stitched sequentially for whole organ mosaicking.

Methods
Imaging setup. An Olympus FV1000-MPE laser scanning microscope system was
used in confocal mode and two-photon mode. XLPlan N 253, a water-immersion
objective with 1.05 of numerical aperture and 2 mm of working distance were used. A
custom-made stabilizer was fabricated in-house. The detailed dimension and
structure of the stabilizer is found in7 but it has not been previously used with the
newly developed algorithm. The main function of the stabilizer is not to immobilize
tissue but rather to introduce reliable, reproducible positions.

Mouse preparation. Experiments were approved by the Institutional Review Board.
During surgical procedures and imaging, mice were anesthetized with 2% isoflurane
in oxygen. The anesthetized mice were placed on a 37uC heating pad. For the case of
mechanical ventilation, mice are ventilated using a small animal ventilator (Harvard
Apparatus INSPIRA ASV 55-7058) after intubation. For imaging the abdominal
organ such as liver, kidney and pancreas, the organ was externalized in a minimally
invasive manner. For imaging heart, thoracotomy was performed and the heart was
exposed with the use of the animal ventilator. The exposed organ was then held by the
stabilizer and kept moist with saline during the experiment.

Image processing. Raw images were processed in Matlab (The Math Works, Natick,
MA). Automatic image reconstruction described in the result section (Fig. 2) was also
implemented using a custom-designed routine in Matlab. The correlation coefficient
(CC) between two segments (or views) S1 and S2 is defined as

CC S1,S2ð Þ~

Pm{1

u~0

Pn{1

v~0
S1 u,vð Þ{�S1ð Þ: �S2 u,vð Þ{�S2ð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm{1

u~0

Pn{1

v~0
S1 u,vð Þ{�S1ð Þ2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm{1

u~0

Pn{1

v~0

�S2 u,vð Þ{�S2ð Þ2
s

where the average values are

�S1~
1

m|n

Xm{1

u~0

Xn{1

v~0

S1 u,vð Þ �S2~
1

m|n

Xm{1

u~0

Xn{1

v~0

S2 u,vð Þ

CC is in the range [21,1]. A value of 1 indicates maximum match between two
segments, while 21 corresponds to a maximum mismatch.

Through k-means clustering the ‘‘similarity ensemble’’ E1 containing n1 segments
is partitioned into p clusters {X1, X2, …Xp}. First, initial p guesses m1,m2,…mp are
made by randomly selecting p segments. Second, the set of segments are classified
based in the following way: Xi 5 {Sj such that d(Sj, mi) # d(Sj, mk), k 5 1…p}. Here the
distance between segments S and m, is defined as

d(S,m)~
Xm{1

u~0

Xn{1

v~0

S(u,v){m(u,v)k k2. Third, all clusters’ means are calculated as

mi~
1
Xij j
X
Sj[Xi

Sj . Second and the third steps are repeated until there is no change in the

mean.
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Table 1 | Minimum number of raw images necessary to obtain a final artefact-free reconstruction for the different cases of physiological
motions. The numbers are given for images 512 3 512 pixels in size and with 2 microseconds/pixel integration time. A reduced number of
raw images (and shorter time) can be obtained if smaller sizes or shorter integration times are considered

Motion Source Cardio-Respiratory Cardiac Activity Mechanical Ventilation Spontaneous Breathing

Minimum required # of images 20 12 7 4
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