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Real-time high dynamic range laser scanning
Mmicroscopy
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In conventional confocal/multiphoton fluorescence microscopy, images are typically acquired
under ideal settings and after extensive optimization of parameters for a given structure or
feature, often resulting in information loss from other image attributes. To overcome the
problem of selective data display, we developed a new method that extends the imaging
dynamic range in optical microscopy and improves the signal-to-noise ratio. Here we
demonstrate how real-time and sequential high dynamic range microscopy facilitates auto-
mated three-dimensional neural segmentation. We address reconstruction and segmentation
performance on samples with different size, anatomy and complexity. Finally, in vivo real-time
high dynamic range imaging is also demonstrated, making the technique particularly relevant
for longitudinal imaging in the presence of physiological motion and/or for quantification of
in vivo fast tracer kinetics during functional imaging.
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he ability to directly visualize cellular and subcellular

structures and function has greatly contributed to our

knowledge of biological processes'™>. Among optical
imaging techniques, laser scanning fluorescence microscopy
(LSM) is one of the most widely used due to its high
sensitivity, resolution, and penetration depth. Two-photon
microscopy in particular has enabled major advances in
virtually every biological field to which it has been applied to
date*. Most commonly, LSM techniques are optimized and
acquisition parameters are chosen to display a given structure of
interest. This approach works well for many applications but is
disadvantageous in circumstances where structures of contrasting
brightness cannot be displayed simultaneously. This is
particularly true for neuronal imaging, where cell bodies are
significantly larger than neuronal processes, and where there is
heterogeneity in the density of cell populations resulting in high
intra-scene dynamic range. Furthermore, images with low signal-
to-noise ratio (SNR) will lead to the fragmentation of the neural
segments. Conversely, the presence of saturated regions will result
in the inability to differentiate cell bodies or processes from
neighbouring cells.

Photomultiplier tubes (PMT) are ubiquitous among commer-
cial confocal and two-photon microscopy systems, due to their
low cost, high sensitivity and wide coverage of wavelengths.
Therefore, a high dynamic range (HDR) imaging method that
utilizes PMT technology would provide broad access to micro-
scopists. The PMTs used in LSM have a limited detection
dynamic range, typically three orders of magnitude, which
determines the range of variance in the detectable fluorescence
signal and thus the maximum and minimum intensities that can
be simultaneously detected within a field of view®. For biological
samples, the intra-scene dynamic range (IDR) is determined by
the underlying biology and is thus dependent on the distribution
and concentration of protein expression or target molecules to be
imaged. Because the IDR is typically large compared with the
detectable dynamic range of PMTs, images will inevitably have
regions with intensities that are either saturated or below the
background, leading to information loss and compromised image
quality. Moreover, despite the fact that typical microscopy
imaging systems provide images with 8 or 12 bits depth, the
available IDR acquired from the sensor can be largely reduced by
the amount of noise and background resulting in an effective
dynamic range with reduced bit depth.

Avalanche photodiode detectors (APD) constitute an alter-
native option to PMTs, especially when operating at low photon
fluxes, where PMTs suffer from a significant amount of dark
noise above the shot noise limit®. In this regime, pulse counting
detection’ is usually preferred, offering high SNR at low counting
rates®. However, the dynamic range of single photon counting
measurements is relatively low with a limited counting rate on the
order of approximately 107 counts per second®, confining its
applications in optical microscopy to highly specialized areas
where very low number of photons are present. Commercially
available single photon counting instruments offer maximum
count rates on the order of 10 to 100 Mega-counts per second
(ref. 8) but their linearity is still limited to just 1 to 2 MHz (ref. 9).
These values are insufficient to produce high-SNR images for
pixel dwell times below 10 microseconds or alternatively for pixel
acquisition rates higher than 100 kHz (ref. 8). Thus single photon
counting is impractical for high-resolution imaging at high SNR,
restricting its use to small fields of view and longer dwell times!’.
Another limiting factor is the readout rate (pixel clock rate),
which gives the speed at which data can be retrieved from the
detection scheme'’. Only recently has the use of sophisticated
photon counting circuity or the implementation of field
programmable-gate arrays in combination with statistical

2

processing substantially improved their dynamic range,

extendin% Ehoton-counting operation to higher-emission rate

regimes' 12, But th hod ill early in devel f:
gimes . But these methods are still early in development, far

from being commercially available, and have only been applied in
a few specialized studies®®11:13,

So far, several approaches have been developed to extend the
dynamic range of optical imaging detectors, both hardware
and software based. High dynamic range imaging for digital
still cameras!®!>, in particular, has reached the mainstream
through the use of smart phones and digital single-lens reflex
(DSLR) cameras, and is based on the acquisition of several images
with progressively increasing exposure times (exposure
bracketing). Although these techniques have found a wide
range of applications, they lack the resolution and sensitivities
necessary to image at the subcellular level. For fluorescence
microscopy, hardware-based approaches have also been
developed to extend the dynamic range of optical imaging
detectors, including adaptive illumination'®. The adaptive
illumination method uses negative feedback loops in
combination with analogue optical modulators to hold the
average detected power at a constant level'®!7. Although
adaptive illumination is an elegant approach, it requires
additional electronics, realignment of the setup and the
presence of electro-optics modulators. Statistical approaches can
also be effective at extending the linear range in photon-counting
measurements during pulsed excitation'®. Finally, a new class of
recently introduced PMT tubes (H13126, Hamamatsu) appears to
offer a wide dynamic range up to eight orders of magnitude.

Here, we present a new technical approach for confocal and
two-photon microscopy namely, high dynamic range fluores-
cence laser scanning microscopy (HDR-LSM). The technique is
based on the simultaneous or sequential acquisition of progres-
sively saturated images mathematically fused into a composite
HDR image. Moreover, we propose a method for simultaneous or
sequential acquisition of HDR data, which requires no additional
acquisition time (for the simultaneous acquisition case), and can
be easily implemented on any commercially available LSM system
both in two-photon and/or confocal mode. We show that
HDR-LSM improves image segmentation and quantification by
applying the method to neural tracing, and on samples with
different sizes, anatomy and complexity. Finally, in vivo real-time
imaging is demonstrated, allowing for longitudinal HDR imaging
in the presence of physiological motion as well as for quantitative
imaging of in vivo fast tracer kinetics.

Results

Imaging setup and acquisition pipeline. The acquisition and
processing pipeline for HDR-LSM (Supplementary Fig. 1) con-
sists of acquiring, simultaneously or sequentially, a series of
images covering the full dynamic range of the sample (Fig. 1a),
reconstructing a composite HDR image (Supplementary Note 1)
for quantitative signal data analysis, and then remapping the
HDR image (rHDR) for display and image feature enhancement
for structural data analysis, using a global nonlinear transfor-
mation followed by a histogram equalization if further local
contrast is required (Supplementary Note 2).

The imaging setup is based on a custom-modified commercial
imaging system (Fig. 1b, Supplementary Figs 2-4, ‘Methods’
section). Here low dynamic range images (LDR) are acquired
simultaneously for the real-time acquisition scheme, or sequen-
tially, under different detection conditions (for example, attenua-
tion of the signal before PMT detection) such that different parts
of the images progressively result in saturation (Supplementary
Figs 2-4). LDR images are then corrected for the detectors’
response (Supplementary Fig. 5), and combined into a composite
high dynamic range image (HDR; details available in
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Figure 1 | Imaging setup and image-processing principle for real-time two-photon imaging. (a) Principle for HDR imaging. Only a restricted portion of
the detector dynamic range can be effectively used for signal quantization (R,). The dark noise (blue area, R;) limits the low signal detection, while the high
intensity signal near the detector's maximum threshold is saturated (red) and is also disregarded (R3). By combining multiple images (LDR1, LDR2, LDR3)
with different sensitivities (oo, o, o2) the quantization range can be increased giving rise to a high dynamic range image (HDR). Images are simultaneously
acquired from three different detectors (PMT1, PMT2, PMT3). The presence of neutral optical density filters with distinct absorptions gives rise to three
images covering different areas of the sample’s dynamic range. When no absorption filter is present, the limited quantization range provides high sampling
resolution at low signal values while saturated regions values are instead unresolvable. Conversely, the images obtained when increased absorption is
present in front of the detector, extend the range of the saturated pixels into the usable quantization interval. Meanwhile, regions within the image with low
signal are instead buried into the noise. When the information from all the images is combined together, it provides an extended dynamic range and high
SNR image. The dark noise level can be different for other measurements schemes. LDR* represents LDR images weighted by «. (b) Schematic
representation of the two-photon imaging setup for real-time HDR imaging (Supplementary Fig. 2 and ‘Methods’ section). BS, beam splitter; BP, bandpass
filter; DC, dichroic mirror; LP, longpass filter; ODF, neutral optical density filter; PMT, photomultiplier tubes. Depending on the microscope setup or
preferences, BS could be cube beam splitters, plate beam splitters or a combination of both. An arbitrary number of acquisition channels can be used
depending on the number of PMTs available and the intra-scene dynamic range. To perform real-time HDR two-photon acquisition, a minimum number of

two PMTs is required.

Supplementary Note 1) with a dynamic range greater than the
individual LDRs. Other real-time acquisition configurations are
possible (Supplementary Note 1), including the use of asymmetric
non-polarizing beamsplitters (Supplementary Fig. 4). Here, the
whole fluorescence signal contributes to the HDR image
reconstruction being the fluorescence distributed by the beam
splitters in different ratios to the PMTs.

We first validated the sequential acquisition and reconstruction
scheme in a phantom with regions of known fluorescence
concentration (Fig. 2a-h, Supplementary Fig. 6, ‘Methods’
section). In the LDR image (Fig. 2a), the signal from the region
with the lowest concentration of fluorophore (y) was buried
below the background noise () when the highest concentration
of fluorophore (¢) was not saturated. Conversely, when the lowest
concentration was above the noise, the highest concentration was
saturated (Fig. 2c). However, using HDR-LSM imaging, all three
concentrations were within the observation range (Fig. 2i,j). This
is accomplished by fusion of the LDR images into a composite
HDR image (Supplementary Fig. 7) and then remapping the
HDR ima§e (re-mapped HDR, rHDR) for visualization
(Fig. 2i)!%7?%. The SNR over the range of the entire image is
also greatly improved and imaging is substantially faster
compared with the conventional method of averaging
(Supplementary Fig. 8).

HDR two-photon imaging. After proof-of-principle validation,
we applied our technique for two-photon high-resolution HDR
imaging. We utilized a mixture of beads consisting of three
different concentrations of fluorophore with fluorescence
brightness spanning several orders of magnitude (‘Methods’
section, Fig. 3a-j). Images (Fig. 3a—c), histograms (Fig. 3d-f,
Supplementary Fig. 9) and intensity profiles (Supplementary
Fig. 10) show that two-photon HDR-LSM greatly enhances the

dynamic range providing information of the dim beads without
losing information from the bright beads (Fig. 3g). We then
compared this result to image averaging (Fig. 3h), a common
approach to improve SNR. Averaging provides only a modest
improvement in SNR, resulting in insufficient SNR and loss of
structural information (Fig. 3ij). HDR, however, significantly
improves SNR and maintains structural information for various
parameter sets (Supplementary Fig. 11). The technique was also
validated on the biological samples using BS-C-1 cells stained for
actin (Fig. 4a-f, ‘Methods’ section). Here a large intra-scene
dynamic range is present and both rHDR images (Fig. 4c,f),
rHDR and HDR intensity profiles (Fig. 4g,h), reveal structural
information over an extended dynamic range with enhancement
near saturated pixels. To demonstrate that the information
present in the rHDR images does not arise as a result of
reconstruction artifacts, a comparison was performed between an
HDR reconstruction obtained by acquiring images at a reduced
bit depth of the PMT’s dynamic range and one acquired utilizing
the full dynamic range (Supplementary Fig. 12).

Brain imaging. We then utilized two-photon and confocal
HDR-LSM for brain imaging (Fig. 5a-i, ‘Methods’ section).
Remapped HDR images (Fig. 5d,g-i, and Supplementary
Figs 13-15) and three-dimensional (3D) rHDR data sets
(Supplementary Fig. 16, Supplementary Movie 1-3) were used for
visualization and qualitative assessments. Filament Tracer, a
module of the commercial software Imaris (Bitplane, St Paul,
MN, USA) developed for the detection of neurons, microtubules
and filaments in 2D and 3D, was used for segmentation due to its
widespread utilization in the scientific literature and the
protocols availability (for example high resolution circuit
mappin§ and phenotyping or dendritic spines segmenta-
tions)?>?°, The demonstrated increased accuracy in segmentation
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Figure 2 | Imaging phantom. (a-c) Three low dynamic range (LDR) fluorescence images with their relative histograms (d-f), of an imaging phantom
composed of four distinct non-adjacent areas with different fluorophore concentrations (Supplementary Fig. 6 and ‘Methods' section), as measured from
one detector with its dynamic range accurately centred around the maximum intensity of each specific region (y, 8, €). Region v, dark green. Region §,
green. Region ¢, light green. (gh) In the non-saturated image (LDR1), the signal contribution from the region v is buried within the noise with a low SNR
(re-scaled subset image of region v is shown in h. (i,j) Remapped HDR image (rHDR, compressed dynamic range for visualization) obtained combining
the information from the three different LDR images and displayed with a dynamic range compression mapping algorithm (‘Methods’ section and
Supplementary Note 2), along with its corresponding histogram. The dark noise image (region B) is the same for all phantom’s mosaicked images

a-c. The blue colormap threshold for the dark noise is set at the maximum of the dark noise signal. Image colour bar: blue, dark noise; red, saturation levels.

Scale bar, 50 pm.

and quantification (Supplementary Fig. 17) is attributed to the
improved SNR and extended dynamic range within the
composite and remapped HDR images (Fig. 6). This resulted in
a lack of the common artifacts present within LDR images,
including noise-induced fragmentation and saturation-induced
proximity cell fusion. Moreover, our results show that HDR
imaging reveals structures previously unattainable within a single
acquisition (Fig. 5e-g, Supplementary Fig. 18). The composite
HDR images were used for quantitative measurements of neural

structures (Fig. 7a-e) as they best showcase fluorescence signal
over an extended dynamic range.

Improved image segmentation. We also used a trainable Weka
(Waikato Environment for Knowledge Analysis) segmentation
algorithm (see ‘Methods’ section), which has been demonstrated
in a range of imaging pipelines for many different imaging
modalities, including two-photon microscopy. The results of the
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Figure 3 | Microspheres HDR two-photon imaging. (a-c) Low dynamic range fluorescence images and (d-f) relative histograms of a mixture of three
fluorescent microspheres populations with three different discrete values of fluorescence concentrations (see ‘Methods' section) centred at different
intensity signals within the digitizing range. Bead population 3, light green. Bead population 2, green. Bead population 1, dark green. (g) Remapped
HDR image (rHDR, compressed dynamic range for visualization) and (h) averaged (100 x ) low intensity LDR1 image. (i,j) Corresponding histograms.

Image colour bar: red, saturation levels. Scale bars, 10 pm.

segmentation approach, including segmentation of cell bodies
across different regions of the brain presenting distinct degrees of
cell densities, is shown in Fig. 8 and Supplementary Fig. 19. To
determine the improvement in performance of the segmentation
approach across the different images, a direct comparison was
made between automatic and manual (here used as a reference)
segmentation approaches applied to both the LDR and HDR
images. Higher accuracy was achieved using the automated
segmentation algorithm when applied to the HDR images rather
than the LDR images (Fig. 8). Specificity, sensitivity and accuracy
of cell detection were computed based on the number of false
positives (that are incorrectly classified as cell bodies), false
negatives (that are undetected cells) and the total number of cell
bodies (Supplementary Fig. 19).

Confocal HDR imaging for different sizes and anatomy and
complexity. In addition to cellular imaging and segmentation of
brain samples, we addressed the imaging and quantification of
reconstruction performance of the HDR imaging platform using
samples with different sizes, anatomy and complexity. First, we
focused on subcellular HDR imaging of mitochondrial structures
presenting a high degree of morphological complexity. Recent
evidence has illustrated that mitochondria are dynamlc networks,
which rapidly and continuously remodel themselves?’. Owing to
their morphological complexity, attempts to study mltochondrlal
networks and their morphology in vitro have led to emerging
image processing techniques to segment mitochondria labelled
with fluorescent dyes or genetic reporters. Unfortunately,
highly heterogeneous fluorescent expression found in many
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Figure 4 | Cellular HDR two-photon and confocal imaging. (a-f) Images of BS-C-1 cells stained for actin (see ‘Methods' section). Low (a,d) and high
(b,e) LDR images and rHDR (c,f) images. Emphasis of the extended range at reduced scale is shown within the dashed box in Supplementary Fig. 27. (gh) Actin
fluorescence intensity along the profile indicated in d for for both LDRs, rHDR (g) and HDR (h) images. Scale bar (a), 100 um. Scale bar (d-f), 20 um.

reporters affects the overall image quality. Standard LDR images
(Supplementary Fig. 20) often contain cells with saturated signal
or signal below or near the detection limit (that is, low SNR),
making it impossible to accurately segment mitochondrial
features. By combining previously validated algorithms?® (see
‘Methods’ section), we performed segmentation on both LDR and
remapped HDR images and demonstrated the ability to identify
and accurately segment a larger percentage of mitochondria in
rHDR images compared with LDR images (Supplementary
Fig. 20).

After imaging at the subcellular level, we also tested our
imaging platform and reconstruction algorithm at the macro-
scopic level by imaging the vasculature network in cleared organs,
including the brain and the heart. The cerebral vascular
structure is of fundamental importance in several brain-specific
pathologies, such as glioblastoma where vessels are tortuous and
disorganized and present large diameters and thicker basement
membranes®®. In the heart, the vascular network also plays a
critical role in the delivery of oxygen and nutrients to the
cardiomyocytes. A better understanding of the coronary network
dysfunctions caused by coronary artery disease, or vascular
remodelling of the endocardium following cardiac infarction is
required to study disease progression. Therefore, the ability to

perform high fidelity imaging and quantifications of the vascular
network in these organs is in great need.

Following Dil staining (see ‘Methods’ section), we imaged the
cleared brain (Supplementary Fig. 21) and heart (Fig. 9) using
both LDR and HDR imaging. We then quantified features of the
vasculature network, including the number of vascular branches
in the heart (Fig. 9, Supplementary Fig. 22). Automated
segmentation of rHDR images allowed for the identification of
vascular features that agreed with values obtained using ground
truth manual segmentation. Conversely, LDR image segmenta-
tion resulted in a high degree of vasculature fragmentation
(low branch length) due to the low SNR present within the image.

In vivo real-time two-photon HDR imaging. To highlight real-
time acquisition capabilities of our HDR imaging platform, we
then performed real-time two-photon HDR microscopy for
longitudinal imaging in the presence of physiological motion and
for quantification of in vivo fast tracer kinetics during functional
imaging. Imaging was performed in the subcutaneous tissue of
mice implanted with a dorsal window chamber (see ‘Methods’
section). During intravital microscopy imaging, both cardiac and
respiratory cycles compromise the ultimate spatial and temporal
imaging resolution. If the images are acquired sequentially,
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Figure 5 | Brain HDR two-photon and confocal imaging. (a-c) Low dynamic range (LDR) images of a whole brain section with (d) the corresponding
computed remapped HDR image (rHDR, compressed dynamic range for visualization). Red, saturation. Magnified LDRs (e,f) and rHDR (g) maximum
intensity projection (MIP) images of the boxed region a in d. (h,i) Magnified rHDR MIP images of the boxed region 3 in d and the boxed region of
Supplementary Fig. 15a. (a-d) Scale bar, 250 pm. (e-g) Scale bar, 100 um. (h) Scale bar, 200 pm.(i) Scale bar, 150 um.

physiologically induced motion-artifacts degrade the quality of
the HDR reconstructed images. Different areas of sequentially
captured images may be misaligned in consecutive frames, giving
rise to severe ghosting artifacts in the final reconstructions. In the
real-time acquisition modality these artifacts do not occur as
the pixels used in the HDR reconstruction are acquired
simultaneously via multiple PMTs (Supplementary Fig. 23).
Another important application of real-time HDR microscopy is
the possibility to obtain in vivo accurate quantitative assessments
of the time intensity variations that represent the kinetics of a
probe across multiple tissue compartments. This is particularly
relevant for studying the intravascular extravasation and
extravascular pharmacokinetics of fluorescently labelled drugs.

Single-cell analysis of drug pharmacokinetics requires the
ability to quantify drug concentration kinetics in the vascular,
interstitial and cellular compartments®. However, conventional
LDR microscopy imaging does not have sufficient dynamic
range to handle the substantial spatio-temporal variations
in drug signal intensity, making it challenging to quantify drug
pharmacokinetics at the single-cell level®°. As a proof of concept,
we characterized the vascular kinetics following tail vein injection
of a bolus of different molecular weight FITC-Dextrans, in a
dorsal window chamber mouse model.

A bolus of 2MDa FITC-Dextran was injected intravenously
followed by a bolus of a 4kDa FITC-dextran (see ‘Methods’
section). The temporal resolution of the two-photon real-time
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Figure 6 | Brain HDR two-photon imaging facilitates neural segmentation. VVolumetric LDRs (a,b) and rHDR (¢) reconstructions of the boxed region B of
Fig. 5d. (d-f) 3D segmentations of the different cell populations present in a-¢. LDRs (g h) and HDR (i) automatic 3D segmentation of two adjacent cells
(blue, purple) within the boxed regions n of Supplementary Fig. 15. Volumetric LDRs (j,k) and rHDR (I) reconstructions of the boxed region 6 of

Supplementary Fig. 15. LDRs (m,n) and HDR (o) automatic 3D segmentation of the cell in j-1. White, dendrites and processes. Blue, cell bodies. (a-f) Scale

bars, 100 um. (g-o0) Scale bars, 50 pm.

acquisition was sufficient to capture the vascular kinetics of the
2MDa probe (Fig. 10) and the extravasation of the 4kDa probe
into the interstitial tissue (Supplementary Fig. 24). Regions of
interest were selected in the vascular (Fig. 10) and extravascular
(Supplementary Fig. 24) compartments and time-intensity curves
were calculated as the mean of the signal within the region of
interest as a function of time.

Signal degradation due to photobleaching during HDR
imaging, under typical acquisition conditions, was not observed
for all the probes used in this study (Supplementary Fig. 25). This
was also valid for the cells expressing a green fluorescent protein
(GFP) genetic reporter of mitochondria, cells stained with
AlexaFluor-488 Phalloidin, Dil stained vasculature in both fixed
and cleared tissue, and brain tissue sections stained with
AlexaFluor-488 conjugated secondary antibodies. AlexaFluor
dyes are frequently used in cleared samples for whole-organ
imaging, due to their low photobleaching and for their stability in
clearing solution over periods of several months and over
multiple imaging sessions>!. Lipophilic tracers such as Dil also

8

exhibit low photobleaching and high fluorescence intensity
making them suitable for laser scanning microscopy in general
as well as for imaging in cleared organs>2.

Discussion

The recent introduction of innovative high-throughput and
high-resolution imaging modalities along with the concurrent
development of novel clearing techniques®>=37  enables
sectioning-free imaging of intact brain tissue’® facilitating
mapping of neural connectivity (connectome) of the whole
brain at the microscopic level®>. However, data analysis
constitutes the major bottleneck of the analysis pipeline and
requires the use of sophisticated unsupervised image-processing
techniques for automatic 3D digital reconstruction and tracing of
the individual neuron processes. Unfortunately, the presence of a
wide range of signal intensities is a common challenge in
neuronal imaging, particularly for large specimens such as the
entire brain. Some neural processes are extremely fine and
difficult to visualize with fluorescent proteins, requiring scans at
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Figure 7 | Structural information in HDR two-photon imaging brain reconstructions. (a) Number of pixels containing structural information in the
LDRs and HDR images of the boxed regions & and v, respectively of Fig. 5d. LDR1, black square; LDR2, black triangle; HDR, black circle. (b) Number of
counted cells as a function of depth within the LDRs and the respective HDR 3D volumes. Dendrite length (c), number of branch points (d) and sum of the
dendrites length (e) calculated for the two cells of Fig. 6g-i, for both LDRs volumes, and the two HDR segmented cells.

high laser power or high gain to resolve their structure. In
contrast, larger dendritic varicosities (sites of synaptic contact)
often are robustly labelled with fluorescent proteins, requiring
lower laser power or gain to preserve structural details
(Supplementary Fig. 26). At the microscope level, we are
therefore typically forced to strike a balance in the scanning
parameters, and it is common to observe loss of data within and
among cells (Supplementary Fig. 27), resulting in reduced
segmentation accuracy.

Here we have shown that two-photon and confocal HDR-LSM
enable visualization and quantification of dim and bright
structures within the same field of view, via significantly
improved SNR and extended dynamic range. In addition to
providing more aesthetically pleasing images through HDR
remapping, our HDR fusion algorithm provides more accurate
measurements of fluorophore concentration. Moreover, the
simultaneous acquisition of multiple LDR images enables
real-time HDR-LSM, where non-stationary objects could be
imaged in real-time making the technique also suitable for
in vivo imaging. Specifically, we have illustrated that real-time
two-photon HDR imaging provides the ability to remove
artifacts caused by physiological motion, to capture data with
sufficient temporal resolution to image the tracer kinetics in
real-time, and has sufficient dynamic range to capture the
substantial signal variations observed between the vascular and
extravascular compartments. This demonstrates that real-time
two-photon HDR-LSM is particularly useful for in vivo
systematic analysis of fluorescent drug pharmacokinetics across
tissue compartments, and between heterogeneous cell popula-
tions in real time3%-39:40,

Moreover, the real-time HDR acquisition allows for accelerated
acquisition of large data sets with large dynamic ranges
(Supplementary Fig. 8) preventing lengthy imaging sessions. This
is particularly relevant for cleared tissue where hours or days are

typically spent for whole-organ imaging with thousands of optical
sections collected per single position, in composite stitched
images that can cover areas across 1-2 cm in area (approximately
one million images per sample).

Compared with other HDR approaches, our technique is
simple to implement in any commercially available two-photon
imaging system and/or confocal microscope (Supplementary
Figs 2-4), at virtually zero cost, and thus can be widely adopted.
In addition, our HDR imaging approach may be easily extended
to other microscope configurations, including light-sheet, wide-
field and spinning-disk microscopy.

We envision a number of other applications where both real-
time and sequential two-photon and confocal HDR-LSM would
be beneficial such as cell-to-cell communication, detection of fine
processes such as filopodia or tunnelling nanotubes*!, imaging of
intracellular organelles, network analysis and branching of
dendritic and glial cells among others.

Methods
Cell culture and staining. BS-C-1 cells were obtained from ATCC and cultured in
Eagles Minimum Essential Media supplemented with 10% FBS and 1% penicillin/
streptomycin in a tissue culture incubator. For imaging, cells were seeded on
Poly-L-Lysine (Sigma-Aldrich) coated 12-well slides (Ibidi) and cultured overnight.
The cells were fixed in 4% paraformaldehyde (Electron Microscopy Sciences)
for 15 min and washed for 3 x 5min in TBS. Following fixation, the cells were
permeabilized using a solution of 0.1% Triton-X in TBS and blocked for 30 min in
Odyssey blocking buffer (LI-COR Biosciences). The cells were then incubated with
AlexaFluor-488 Phalloidin (Life Sciences), diluted 1:20 in phosphate-buffered
saline (PBS) for 15 min and washed for 3 X 5min in TBS. Finally, the slides were
affixed with coverslips before imaging.

Mitochondria expressing cells. The OVCA-429 cells were transduced with a GFP
genetic reporter of mitochondria using a CellLight Fluorescent Protein Labeling kit
(ThermoFisher). The cells were transduced 2 days before imaging according to the
manufacturer’s instructions. On the day of imaging, the cells were fixed in a 4%
solution of paraformaldehyde in PBS for 10 min, and sealed with a coverslip.
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Figure 8 | Cell body segmentation. HDR imaging allows for accurate quantification of cell bodies in sparsely populated fixed tissue specimens. LDRs (a,b)
and rHDR (c) images of the neural cells shown in Fig. 5d (region o). (d-f) The cell bodies were segmented for each LDR and HDR image using a trainable
Weka algorithm (see ‘Methods’ section). In each image is indicated the number of body cells identified by the automatic segmentation algorithm.

(g-i) Magnified image of the box area shown in d. Colours are used to help to visualize and distinguish among the different cell bodies present within the
field of view. (j) Comparison of segmentation performance (defined as total number of cell bodies detected) between LDRs and HDR images over four
different images areas. Manual segmentation and counting is used to establish the ground truth. The barplots demonstrate the improved performance of
the automatic segmentation algorithm when applied to the HDR images, compared with LDR image, versus manual segmentation and counting. Image

colour bar: red saturation levels. Scale bars, 100 um. Fluo., fluorescence.

Tissue section preparation. Adult Thyl-YFP-H (YFPH)1 mice were
anaesthetized with pentobarbital and transcardially perfused with PBS followed by
4% paraformaldehyde (PFA) in PBS. Whole brains were dissected and post-fixed
overnight in 4% PFA at 4 °C, washed in PBS, then immersed in 30% sucrose in PBS
at 4 °C overnight for sectioning using a cryostat (100-500 pm). Sections were
incubated with chicken anti-GFP primary antibodies (Abcam) in blocking buffer
(1% horse serum, 0.1% Triton X-100, 0.05% azide in PBS) for 4 days, followed
by a wash with PBS and incubation with donkey anti-chicken Alexafluor-488
conjugated secondary antibodies (Jackson Immunoresearch) in blocking buffer.

Antibody incubation periods were performed at room temperature®2,

Vessel staining. The brain and heart vasculature were stained using a fluorescent
lipophilic dye, DiIC18(3), which accumulates at high concentration in endothelial
cell membrane. The staining procedure is very rapid and efficient and the resulting
bright fluorescence signal is characterized by very low photobleaching*>** making
it particularly suitable for laser scanning microscopy. A protocol similar to the one
indicated in ref. 32 has been followed. Briefly, after being euthanized the mouse
heart was made accessible through thoracotomy and the mouse was perfused by
inserting a needle into the left ventricle and with the right atrium cut open. The
heart was injected with a solution consisting of 2 ml of PBS, followed by 5 ml of Dil
solution and 5ml of 4% PFA at a rate of 1 mlmin ~!. The samples were then
excised, cut and imaged. To reach higher penetration imaging depth, some
specimens were also fixed in 4% PFA overnight and then treated with a clearing
solution allowing for whole-organ imaging.

10

Optical clearing. Tissue clearing and imaging were performed using a slightly
modified version of the CUBIC (clear, unobstructed brain imaging cocktails and
computational analysis) method>?, which is based on the immersion of fixed tissue in
a chemical mixture containing aminoalcohols. CUBIC has been proven to enable rapid
whole-brain multicolour imaging of fluorescent proteins or immunostained samples.
One-millimeter fixed brain sections were immersed in a solution obtained
by mixing 25 wt% urea (Fisher Scientific, U16-3), 25 wt% N,N,N’,N'-tetrakis
(2-hydroxypropyl) ethylenediamine (Fisher Scientific 50-014-48142), and 15 wt%
Triton X-100 (Life Technologies, 85111). Sectioned slices remained immersed for
2 days at 37 °C, while gently shaken. The cleared slices were then mounted on a
custom-made sample holder for microscopy imaging. Alternatively, tissue stained
with Dil were cleared using Rapiclear 1.49 (ref. 45), a clearing agent compatible
with various endogenous fluorescence proteins and lipophilic tracers such as Dil,
following overnight immersion in solution.

Two-photon microscope configuration. The two-photon microscopy setup,
illustrated in Fig. 1b and in Supplementary Figs 2 and 4 is based on a custom
modified Olympus FV1000-MPE (Olympus, USA) laser scanning microscopy
system equipped with an upright BX61-WI microscope (Olympus, USA).
Excitation light (red beam) from a Ti:sapphire laser is focused onto the imaged
sample with a x 25 1.05 NA water immersion objective (XL Plan N, 2 mm working
distance) or a x 25 1.00 NA ScaleView immersion objective (XL Plan N, 4 mm
working distance). The emitted fluorescent light (green beam) is epi-collected
through the same focusing objective and reflected by a dichroic filter, DC, (690 nm)
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Figure 10 | In vivo intravascular dye kinetics. /n vivo intravascular real-time quantification of the time-intensity variations demonstrating the vascular

pharmacokinetics of a fluorescent probe across multiple regions of interests (ROIs). A bolus of 2 MDa FITC-Dextran was injected intravenously through the
lateral tail vein (see ‘Methods’ section) and vascular kinetics were captured by collecting a time sequence of real-time HDR images. (a) ROls were selected
in several blood vessels within a dorsal window chamber and time-intensity curves calculated as the mean of the signal within the ROl as a function of time.
(b-d) Time-intensity curves are plotted for both (b,c) LDR and (d) HDR time sequences. LDR sequences have a limited ability to capture the full dynamic
range of intensities, while HDR sequences present a high SNR and extended dynamic range demonstrating the ability to maintain imaging fidelity for kinetic

quantification. Scale bar, 125 um.

toward a non-descanned detection path. After passing first through a lowpass filter,
LP, (685nm) and a bandpass filter, BP, (490-540 nm), the fluorescent light is split
into two beams, IF1, of equal intensity by a 50/50 beam-splitter, BS1. The first
component of the beam is directly detected by the first photomultiplier tube,

PMT]1, with no neutral density filter attenuation (IF1). Meanwhile, the second
component of the beam (IF1) is split again by a second 50/50 beam-splitter, BS2,
into two new components, IF2 and IF3. Beams IF2 and IF3 are detected by the
photomultiplier tubes PMT2 and PMT3, respectively, after passing through two
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separate neutral density filters ODF1 and ODF2 presenting different optical
densities. Three fluorescence signals are then acquired simultaneously and in real
time with varying attenuations as determined by the three different optical density
filters (typically 0, 0.9 and 1.8 dB). Depending on the range of fluorescence signal
present within the samples, two channels can also be acquired instead of three.
To avoid bleaching during acquisition, the laser power was always kept well below
10 mW, at typical PMT voltages of 410-650 V. Asymmetric beamsplitters can be
used to maximize the number of photons collected at the detectors. A sequential
imaging approach can also be implemented for two-photon microscopy, when
relying on one PMT only or if accurate dynamic range tuning is desired. Also, two
PMTs can be sufficient instead of three, depending on the intra-scene dynamic
range, reducing the total number of acquired images.

Confocal microscope configuration. The imaging system used for this work
allows for dual confocal and multiphoton microscopy, and can be easily extended
for sequential confocal laser scanning microscopy HDR as illustrated in detail in
Supplementary Figs 2-4 and 28. Excitation light (blue beam) from a 473-nm diode
laser is focused onto the sample using the same lens objectives utilized for
two-photon imaging. The emitted fluorescent light (green beam) is epi-collected
through the focusing objective and reflected by a dichroic beam splitter DC
(SDM560). Light is then bandpass filtered (BA490-540) and directed toward a
detection path after being reflected by the galvanometer scanner. Image acquisition
at different intensity peak values, necessary for HDR processing, can be obtained by
appropriately selecting the excitation laser power or by changing the PMT voltage
values, which determine the level of signal amplification. To provide high-quality
images, the laser power and PMT voltage should be chosen such that the sample is
not bleached and high noise levels are not introduced, which would restrict the
dynamic range of the acquired image.

Image acquisition. 3D data sets were all collected in optically cleared tissue
sections. Z stacks were collected for both confocal and two-photon microscopy
using two motorized stages controlling both planar and axial translations. Typical
data set acquisition consisted of two to four z stacks with approximately 100 optical
sections (1 pm per section). First, whole-brain HDR images were obtained in
confocal mode using a x 10 (UMPLFL, 0.3 NA, 10 mm WD) or alternatively a x 2
air objective (XLFluor, 0.14 NA, 21 mm WD). These preliminary measurements
allow for improved identification of interesting structures. For confocal
microscopy, the images are collected sequentially by varying the intensity of the
excitation light. For real-time two-photon microscopy, optical density filters, or
asymmetric beam splitter(s) are added before the detectors (Fig. 1b). The excitation
power and voltage were chosen to minimize noise and photobleaching.

Validation phantom experiment. For proof of principle and HDR validation
(Fig. 2, Supplementary Fig. 6), fluorescein was prepared with 1:1, 1:10 and 1:100
dilutions in DI water.

Beads sample experiment. For structural validation (Fig. 3), 2.5 um green-
fluorescent microspheres (LinearFlow Flow Cytometry Intensity Calibration Kit,
488 nm excitation/515 nm emission, Life Technologies). The kit’s microspheres,
originally intended for flow-cytometry calibration, have varying discrete values of
fluorescence intensity. Microspheres with 0.3, 3 and 100% relative intensity (bead
populations 1, 2 and 3 respectively) were selected and mixed together in equal
parts. The beads were then deposited on a glass slide with a cover slip and sealed
before imaging. Within each population, the intensity distribution is highly
homogenous.

Neural segmentation. High-content analysis in neuroscience makes use of several
image-processing tools and resources for digital tracing®® and all existing software
requires a certain amount of user intervention?’. Within the neuroscience
community, Neurolucida, Amira, Eutectic NTS, Neuron] and Filament Tracer are
the most popular software packages and provide similar functionality.

Neural segmentations shown in Fig. 6d-h and Fig. 7c-e were performed with
IMARIS filament tracker for automatic detection. Automatic segmentation was
chosen over manual segmentation to prevent bias. The parameters were constant
when comparing raw LDR images to high dynamic range images. User input
parameters were: local contrast threshold = 5; signal threshold = mean noise + 3c;
starting point diameter =20 pm, ending point diameter = 2 pm. Disconnected
segments were removed. Segmentation for HDR images was done on 32-bit data.

Cellsegm*® was used for high-throughput 3D cell segmentation of the data
presented in Fig. 7b. The Weka automated segmentation algorithm was used to
identify regions with cell bodies*’. The classifier was trained using an equal number
of cell bodies from both LDR images. After locating the cell body, the mask was
eroded, and a watershed filter was used to separate the neighbouring cell bodies.
The cell bodies were counted usin% a 3D particle counting method previously
described by Bolte and Corelieres™”. The algorithm was used to segment data
presented in Fig. 8, and Supplementary Fig. 19.
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Mitochondrial segmentation. Mitochondria were segmented by combining
previously used algorithms?3, Briefly, a ‘rolling ball’ background subtraction was
first conducted on the images. To prepare the images for segmentation, a modified
version of the previously published algorithm by Giedt et al.?® was then applied.
This consisted of applying a convolution filter with [5 x 5] matrix with a centre
element of 24 and the remaining ones equal to — 1, followed by Fast Fourier
Transform-based bandpass filtering. A maximum entropy-based thresholding
algorithm was applied and size-based filtering was used to eliminate small objects.
All analyses were conducted using Matlab. The algorithm was used to segment data
presented in Supplementary Fig. 20.

Vasculature segmentation. Vasculature segmentation was performed using a
machine learning method based on a trainable Weka segmentation algorithm that
has been demonstrated on a wide range of imaging applications and for many
different imaging modalities*, including two-photon microscopy. The algorithm
was used to segment data presented in Supplementary Fig. 22.

Animal model. The animal experiments were performed in accordance with the
Institutional Animal Care and Use Committee at Massachusetts General Hospital.
The surgical procedures were conducted under sterile conditions and facilitated
with the use of a zoom stereomicroscope. The mice were anaesthetized by
isoflurane vaporization (Harvard Apparatus) at a flow rate of 21 min ~ ! isoflurane:
21min~! oxygen while their body temperature was kept constant at 37 °C during
both surgical procedures and imaging experiments. The dorsal skinfold window
chambers were implanted 2 days before imaging following a well-established
protocol. Because the experiments involved studies of vascular perfusion, it is
crucial to insert a metal spacer within the dorsal window chamber to prevent
excessive compression of both tissue and vessels.

In vivo imaging of vascular perfusion and extravasation. The mice were
anaesthetized as described above with an isoflurane rate of approximately
11min~ . A custom stabilizer plate was used to secure the dorsal skinfold window
chamber and reducing motion artifacts and axial drifts during imaging. The
animals were kept warm with a heating plate to keep their temperature constant
at 37 °C. A catheter was inserted into the tail vein and was used for bolus
administration of fluorescent dextrans. Two fluorescent probes (fluorescein
isothiocyanate-dextran, FITC-Dextran) with different molecular weights (2 MDa
and 4kDa) were used as a fluorescent probe to study vascular perfusion and
extravasation. A bolus of 2 MDa FITC-Dextran was injected intravenously (2.5 uM)
through the lateral tail vein, followed by a bolus of a 4kDa FITC-dextran (1.2 mM).
Because the perfusion kinetic is very fast, it is important to capture the fluorescence
signal at the moment of injection leaving no time to adjust the focal plane.
Therefore, a third dye (TRITC-Dextran 4 kDa) at a different emission channel was
first used to find a representative imaging area and the correct imaging plane.
Two-photon imaging of FITC (excitation 790 nm, emission 490-540 nm) was
performed using a x 25 water immersion objective. TRITC was imaged using the
HDR confocal microscopy method previously described. A x 2 objective was used
to initially identify the best imaging area within the window chamber.

HDR acquisition with real-time reconstructions was performed in free running
mode at a 2 Hz frame rate to capture perfusion and extravasation dynamics of the
FITC-Dextran. To maximize fluorescence collection efficiency, 90/10 beam splitters
were used instead of attenuating filters (Supplementary Fig. 4).
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