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 
Abstract—. Fluorescence acquisition and image display over a high 
dynamic range is highly desirable. However, the limited dynamic 
range of current photodetectors and imaging CCDs impose a limit 
on the fluorescence intensities that can be simultaneously captured 
during a single image acquisition. This is particularly troublesome 
when imaging biological samples, where protein expression 
fluctuates considerably. As a result, biological images will often 
contain regions with signal that is either saturated or hidden 
within background noise, causing information loss.  
In this manuscript we summarize recent work from our group and 
others, to extended conventional to high dynamic range 
fluorescence imaging. These strategies have many biological 
applications, such as mapping of neural connections, vascular 
imaging, bio-distribution studies or pharmacologic imaging at the 
single cell and organ level.  
 

Index Terms—Intravital microscopy, high dynamic range, in 
vivo imaging, drug imaging, optical imaging. 

I. INTRODUCTION 

NNOVATIVE high-throughput and high-resolution imaging 
modalities along with the development of new clearing 

techniques [1], have provided the necessary tools to facilitate 
whole organ mapping  at the microscopic level [2,3].  Even 
though terabyte-size datasets can be collected, recognizing and 
enumerating the elemental cellular components within whole 
organs requires the use of sophisticated unsupervised image 
processing techniques. Ultimately, the quality of the collected 
data depends on the acquisition parameters and the accuracy of 
the segmentation process, irrespectively of the specific 
algorithms used.  

In fluorescence microscopy, the dynamic range of the 
photodetectors determines the maximum range of the detectable 
input fluorescence signal and thus the maximum and minimum 
intensities that can be simultaneously recorded. For biological 
samples, the fluorescence dynamic range of a captured image, 
which is related to the distribution of protein expression or 
fluorescently labeled antibodies staining, is typically larger 
compared to the dynamic range of the microscope detector 
which commonly spans over several orders of magnitude. This 
contributes in making it extremely difficult, if not impossible, 
to obtain accurate segmentations across different areas in both 
single images and whole organs. Moreover, noise and 
background signals contribute also negatively on the actual 
dynamic range, effectively reducing the detectors' bit depths. 
Thus, extending the fluorescence images’ dynamic range and 
SNR is crucial for accurate cellular segmentation and 
quantification. 
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Multi-exposure acquisition strategies coupled with fusion 
algorithms have become standard in photography [4] and their 
principles may be extended to fluorescence microscopy. In 
these techniques, images with varying degrees of saturation are 
fused together to give rise to a single unsaturated image 
covering a dynamic range larger than the one of the single 
acquired images. Lately this strategy has also been extended 
into the biological, biomedical and clinical fields [5] as well as 
other imaging areas [6-8]. High dynamic range (HDR) X-ray 
radiographic imaging experiments have been shown to 
accurately resolve the internal features of complicated 
structural components at different thicknesses [9]. High 
dynamic range full-field optical coherence tomography based 
on exposure bracketing has been proposed, demonstrating 
reduction in the CCD frames spatial noise for improvement in 
fringe contrast [10]. High dynamic range three dimensional 
laminar optical tomography has also been demonstrated for 
increased imaging penetration depth and range in fluorophore 
detection [11]. 
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Fig. 1. Principle of high dynamic range imaging (HDR). Low dynamic range 
(LDR) images progressively saturated in intensity are acquired sequentially or
in real time and an HDR image is reconstructed. Each image covers different
areas of the total fluorescence dynamic range, with different sampling
resolution. The stained vasculature of the heart presents great variability in 
fluorescence signal in relation to the labeling dye variation, and is better
emphasized in the HDR fused image than in the associated LDR ones. Here 
the heart vasculature is labeled with Dil and organs are cleared. Scale bar, 125 
m. Adapted and reprinted with permission from [13]. 
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 Here, we present recent results from our and other groups, 
to develop fluorescence imaging acquisitions with improved  
dynamic range. In particular we focus on the development of a 
new technical approach for high dynamic range confocal and 
two-photon microscopy that extends the imaging dynamic 
range in fluorescence optical scanning microscopy [3]. With 
this technique we have demonstrated composite 32-bits HDR 
images of the brain with improved SNR and dynamic range. 
The technique is also suited for real-time in vivo imaging and 
has been demonstrated for longitudinal studies as well as for 
quantitative imaging of in vivo fast tracer kinetics. Alternative 
approaches are presented also for both microscopic and 
macroscopic in vivo and ex vivo fluorescence imaging. 

II. IMAGING AND ACQUISITION STRATEGY 

Although a relative high number of bits (8-16) are typically 
available for common fluorescence imaging detectors, only a 
limited portion of the detector’s dynamic range is available for 
proper signal quantization, with both dark noise and saturated 
signals near the detector’s maximum threshold disregarded. A 
classic method to increase the dynamic range consists in using 
a multi-exposure approach as delineated by Debevec et al. [12].  
With this approach the dynamic range extension is obtained 
algorithmically through the fusion of multiple low dynamic 
range images with the same field of view (Fig. 1), without the 
need of a new type of detector. Depending on the setup 
configuration, images can be equivalently acquired sequentially 
or simultaneously from one single detector or multiple ones 
respectively. 

A scheme illustrating a typical processing pipeline for 
obtaining HDR images is given in Fig. 2, and it can be generally 
described as consisting of five distinct phases. During the first 
one, images with a low dynamic range are acquired using 
different exposure times, or laser powers (see Section III). The 
acquisition can be performed simultaneously or sequentially, 

depending on the imaging setup available and the specific 
imaging modality. Images are then processed for noise 
reduction and/or motion artifacts removal, if present. 
Correction for any eventual detector signal response over its 
dynamic range is also necessary. During a fourth phase, HDR 
images are obtained by fusing information present in the 
acquired multiple images as illustrated in Section III. Finally, 
HDR images are remapped at a lower dynamic range, typically 
using a global nonlinear transformation followed by histogram 
equalization, to generate remapped HDR (rHDR) images for 
proper display visualization (see Section IV).  

 

III. FUNDAMENTAL CONCEPTS OF HIGH DYNAMIC RANGE 

ACQUISITIONS  

 
Commonly, the first step for obtaining HDR images consists 

in acquiring a series of N distinct low dynamic range (LDR) 
images ۷௡with the intent to sample the entire signal range of the 
object under investigation, and create a final HDR image IHDR 
with a dynamic range greater than that of the individual LDR 
ones. A detailed scheme of the image processing algorithm is 
given in Fig. 3. The different LDR images are typically 

obtained by varying a parameter Δߙ௞ in the acquisition process 

(e.g. increasing the excitation power, or the acquisition 
integration time), so that the detector is subject to different light 
conditions. In practice two or three images (N=2,3) are 
sufficient to achieve good results when dealing with biological 
samples and with reasonable good quality detectors (e.g. 12 
bits). Also, if the images are acquired simultaneously in real-
time no inter-frame movement will be present during 

 
Fig. 2. High dynamic range (HDR) image processing pipeline.  

 

 
 
Fig. 3. Scheme of the HDR image processing algorithm for the generic case 
of N acquired LDR images. The indeces (i,j) run over all pixels of the image 
matrix.  
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acquisition, and HDR images can be seamlessly obtained 
without motion induced artifacts.  

Because the sensor response function is not necessarily linear 
over its dynamic range, a necessary step consists then in 
characterizing the sensor response to mathematically correct 
each individual LDR image. In digital photography, the sensor 
response is usually recovered from the acquired images on a 
case-by-case basis [12], while in confocal and multiphoton 
imaging the sensor response can be easily characterized before 
an experiment takes place. Besides, algorithms that exploit a 
sensor response known a priori, lead to more robust results, in 
particular against noise. 

After the acquisition phase, images are then fused together 
and the final image ۷ୌୈୖ  is reconstructed. The fusion of the 
LDR images is a highly parallelizable process. Considering an 
image as a matrix, a HDR pixel at position (i,j)HDR can be 
calculated from the corresponding (i,j) pixels within the series 
of the N individual LDR images (i,j)LDRk with k=1,2,..N (Fig. 
3). In this way the process to compute a HDR image can be 
limited to one pixel and iterated accordingly over the entire 
matrix.  

While for CCD based imaging all image pixels are associated 
with a different physical detector (represented by the collection 
of all pixels present within the sensor array), for confocal and 
multiphoton microscopy the detector is unique and associated 
with all the image pixels (single point detection). Therefore the 
fusion algorithm will not depend on the (i,j) position within the 
image.  

A generic pixel ݌௞ associated with the k-th LDR image, can 
then be transformed according to 

 

௞ܶ ൌ ݂ ቀݎ,  ௞ቁߙ௞,Δ݌

where ݎ corresponds to the detector response and Δߙ௞  is the 

modulator factor. The generic pixels ݌ு஽ோ௞of the HDR image 
is then computed from the ௞ܶ  values weighted by a window 
function w (e.g. triangular or bell-shaped functions) defined 
such that non informative (i.e. saturated values) and low 
informative (noise) pixels carry less importance in the 
reconstructed image: 

 

ு஽ோ݌ ൌ 	
∑ ்ೖ௪ሺ௣ೖሻೖ

∑ ௪ሺ௣ೖሻೖ
  

 
By iterating this process for all pixels within the LDR 

series, the HDR image IHDR is finally generated (Fig. 3).  
 

IV. BASIC PRINCIPLES FOR DYNAMIC RANGE COMPRESSION 

 
After processing, fusion algorithms allow to build images 

with extended dynamic range. While such images are more 
informative, their direct visualization might be troublesome 
because monitors are not designed to match the newly obtained 
extended dynamic ranges and alternative solution such as tone 
mapping are required. Amongst all possible signal 
transformation, the linear ones are usually not recommended. 

In fact small variations of signal within homogenously 
distributed areas are not enhanced from such a remapping, 
resulting in linearly flattened images. Tone mapping methods 
based on non-linear transformations and global or local 
operators are instead preferable [14]. A global non-linear 
function such as the logarithm is as simple as effective at 
compressing the range algorithmically. However, the 
logarithmic compression greatly enhances the weakest signal 
regions, which are also the ones with highest noise. 
Alternatively, a global non-linear adjustment based on 
exponentiation could be used, 

 

۷௥ு஽ோ	 ൌ ܼ௠௔௫ 	൬
ୌୈୖࡵ

ሺࡵୌୈୖሻ௠௔௫
൰
ఊ

 

 
where ܼ௠௔௫ is a rescaling factor used to fill the display range, 

௥ு஽ோܫ  is the remapped HDR image, ሺܫு஽ோሻ௠௔௫  is a 
normalization factor and ߛ is a manually selected value (see 
Ref. [13] for more details). Still, sub-regions of the remapped 
HDR image can lack sufficient contrast with hidden details 
present within.  Histogram equalization allows for stretching 
the pixel intensity distribution with global contrast 
enhancement. As this method applies a transformation which is 
based on the pixel intensity distribution of the whole image, it 
is not designed for improving contrast locally. For this reason, 
algorithms exploiting local operators are normally preferred.   

A particular class of equalization methods works locally so 
that even restricted low contrast image areas may reveal 
structures. However, the advantage of increasing the local 
contrast may lead to a very noisy signal. To overcome this issue, 

 

Fig. 4. Schematic representation of two different setups for real time two-
photon and sequential confocal HDR imaging microscopy. PMT,
photomultiplier. BS, beam splitter. VA, variable attenuator. FL, focusing lens.
BP, bandpass filter, DM, dichroic mirror. GS, galvo scanner. Adapted and 
reprinted with permission from [13]. 
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methods based on local histogram equalization can incorporate 
a control that limits noise amplification. CLAHE (contrast 
limited adaptive histogram equalization) [15] is a an algorithm 
that combines local processing with noise control and it is 
already found as a built-in function in common  image 
processing programs for research (Fiji, Matlab) in biomedicine.  
CLAHE algorithm divides an image into tiles and then applies 
histogram equalization to each one. Tiles are reassembled 
seamlessly and noise issues are prevented through a histogram 
clipping procedure. CLAHE algorithm is very easy to use as 
just a few parameters can be manually determined to achieve 
good results. In addition parameters may also be automatically 
computed [15], which is useful if high-throughput or limited 
user intervention is a requirement.  

V. LASER SCANNING MICROSCOPY 

A schematic representation of a two-photon and a confocal 
imaging setup for real-time and sequential HDR imaging is 
given in Fig. 4. During image acquisition the imaging sample is 
illuminated with a laser beam focused to a diffraction-limited 
spot, with acquisition occurring on a sequential point-by-point 
excitation and the laser point moving across a raster scan path 
over the entire field of view [16-18]. In the two photon real time 
configuration system (Fig. 4a), different detectors 
simultaneously acquire images. The presence of the 
beamsplitters in the fluorescence emission, assures that the 
detectors cover different areas of the sample’s dynamic range.  

The high splitting ratio channels of the beamsplitters provide 
high sampling resolution at low signal values, where saturated 
signal areas are not resolvable. The low splitting ratio channels 
instead, provide sampling resolution of the saturated pixels and 
extend the detectable dynamic range of the PMT. The use of 
multiple PMTs not only speeds-up imaging acquisition, making 
it ideal for accelerated acquisition of large datasets, but also 
enables HDR imaging of samples in motion making this 
configuration particularly suitable for in vivo applications. In 
fact, simultaneously acquired images require no registration 
prior to fusion as images perfectly overlap, and no further 

 
Fig. 5. HDR imaging of a brain section (a) with respective LDR images (b-d).
LDRs images (e,f) and remapped HDR (g) maximum intensity projection
images of the boxed area  in (a). (a-d) Scale bar, 250 m. (e–g) Scale bar,
100 m. Adapted and reprinted with permission from [13]. 

Fig. 6. Two photon HDR imaging of pyramidal neurons projecting into the
cerebral cortex. LDRs images (a,b). Remapped HDR single plane (c) and 
maximum intensity projection (d), images. Scale bar, 200 m. Adapted and
reprinted with permission from [13]. 

 

 
Fig. 7. Real time HDR imaging for in vivo measurements of intravascular dye 
kinetics. Remapped HDR (a), LDRs images (b,c), and corresponding time-
intensity curves at different region of interest (ROIs) (d-f). Injected dye, 2MDa 
FITC-Dextran. Scale bar, 125 m. Adapted and reprinted with permission
from [13]. 
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processing is needed [19]. Therefore, no artifacts due to image 
mismatching are introduced by the merging algorithm. 

In the confocal sequential imaging configuration (Fig. 4b), 
HDR imaging can be achieved by varying some of the 
microscope’s acquisition parameters such as the PMT voltage 
or the laser power, so that each measurement captures a 
subrange of the whole dynamic range to be covered. Each 
choice presents some limitations in terms of noise background 
or bleaching effects. While this option can be implemented on 
any imaging system without any particular setup modification, 
it is not ideal  for in vivo imaging applications. 

Another elegant solution consists in actively regulating the 
laser power pixel-by-pixel using negative feedback electronics 
[20,21] in order to avoid saturation and to keep the signal above 
the noise background. In a recently proposed configuration [22] 
laser power and signal are simultaneously detected and 
controlled, with the feedback loop controlled by a digital field 
programmable gate array (FPGA).  

VI. EX VIVO AND IN VIVO APPLICATIONS 

As potential application of our technique, remapped HDR 
images of a whole clear brain slice is shown in Fig. 5.  The 
visualization of both dim and bright structures within a single 
image, due to the varying degree of fluorescent protein 
expression, is greatly enhanced with respect to the associated 
low dynamic range images enabling to reveal structures 
previously unattainable with single acquisitions. This enables 
accurate measurements of fluorophore concentration and better 
quantification via improved segmentation of cellular and 
dendritic structures. Quantitative results on HDR two-photon 
imaging brain reconstructions have been also demonstrated [13].   

HDR imaging is also particularly well suited for maximum 
intensity projections (MIP) as a result of the great amount of 
difference in GFP accumulation between nuclei and dendrites 
present within the imaged volumes (Fig. 6). 

The simultaneous acquisition in real time of multiple LDR 
images allows us to obtain in vivo HDR images that are not 
degraded by the presence of physiologically induced motion 
artifacts, enabling accurate quantitative assessments of 
fluorescent drug kinetics in different tissue compartments.  In 
Fig. 7 the kinetic of an intravascular dye within a dorsal window 
chamber mouse is shown for normal LDR images and for real 
time HDR quantitative imaging at different regions of interest. 
The corresponding time-intensity curves showcase the ability 
that HDR images offer to capture in a quantitative fashion the 
entire concentration range variability of fluorescent probes.  

VII. HDR FLUORESCENCE MOLECULAR TOMOGRAPHY  

In vivo whole body visualization of fluorescent probes and 
proteins can offer insights into molecular targets and 
physiology. Among the different volumetric imaging 
modalities that help visualizing fluorescence signal deep in 
turbid tissue, fluorescence molecular tomography (FMT) offers 
the capability to obtain 3D tomographic mapping of 
fluorescence activity throughout whole small animal bodies. 
Despite being low resolution, the technique is non-invasive and 
it has been used so far for in vivo imaging of specific molecular 
targets, pathways and physiological effects in vivo [23]. 

Typically the sample under study is illuminated with a beam 
of light (excitation wavelength) at multiple projections and 
fluorescence images are acquired in transillumination mode 
using a CCD in combination with imaging optics. Maps of the 

underlying imaging fluorescence contrast can be obtained using 
well established mathematical models of tissue photon 
propagation. Due to the limited dynamic range of the imaging 
CCD, the quality of the projection images is severely 
constrained. This poses a great challenge in terms of 
fluorescence image acquisition particularly when fluorescent 
targets with large differences in concentration are present in the 
sample. It also affects the quality of the absorption images 
necessary for the Born-normalized approach that takes into 
account the spatially dependent component of the excitation 
signal [24]. Therefore a trade-off between working at the 
saturation level and above the noise has to be made, resulting in 
detrimental reconstruction artifacts.  

A method to overcome these limitations has been recently 
proposed for CCD-based free-space fluorescence molecular 
tomography [25]. A series of progressively saturated 
fluorescence image projections are acquired to characterize the 

Fig. 8. HDR-FMT of a tumor-bearing mouse intra-tumorally injected with 
HPPS  fluorescent nanoparticles. Low dynamic range projection image (a) and
its superimposition on a white light image (b). (c) XCT image of the mouse
during fluorescence acquisitions. T1 and T2 indicate the location of the two 
seeded tumors. FTM reconstructions using low dynamic range image 
projections at progressively increasing acquisition times are given in (d-f). 
HDR-FMT reconstruction (g)  and overlay between a reconstructed oblique
section and XCT (h).  (i) Intensity profiles along the green line in (h) for the
HDR and three LDR-FMT reconstructions show that HDR-FMT recovers 
intensity profiles of the fluorescent targets with the best accuracy. Reprinted
with permission from [25]. 
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CCD response function of the instrument, and HDR 
fluorescence projection images at every source position are 
obtained to perform FMT reconstructions. Because the number 
of images could be extremely high, in order to obviate for the 
increasingly long acquisition times due to the multiple exposure 
acquisition scheme (typically three images per HDR 
reconstruction), images were reconstructed using an iterative 
re-weighted L1 regularization scheme limiting the number of 
total HDR projections. Results on phantoms and in vivo on 
tumor-bearing mice (Fig. 8) show that HDR-FMT provides 
quantitative results and improves the localization performance 
of fluorescent targets presenting large concentration 
differences, with great potential for preclinical and clinical 
work.  
 

VIII. HDR OPTICAL PROJECTION TOMOGRAPHY  

 
Optical projection tomography (OPT) [26] is a three-

dimensional imaging technique based on transillumination 
measurements of both transmitted and fluorescently emitted 
light, with broad use in both developmental biology and gene 
expression studies [27] and for resolving targeted and 
activatable near-IR (NIR) fluorescent molecular beacons [28]. 

For samples to be imaged they need to present very low light 
diffusion properties with both low scattering and absorption 
coefficients. This is typically achieved when imaging very 
small transparent organisms in vivo or by making samples 
transparent using clearing solutions for ex vivo applications. 
Fluorescent and non-fluorescent biological samples up to a few 
centimeters in size can be imaged with resolutions up to 10 
microns.  

During typical acquisitions, multiple images are taken over 
360° with 1° or less steps. In general, the imaging system 
consists of a lens with high telecentricity, which project photons 
traveling parallel to the lens optical axis onto a CCD camera 
[29]. Thanks to the low or relatively absent scattering 
contributions, the absorption reconstructions are analogous to 
the one performed for x-ray computed tomography and can be 
obtained using a common Radon backprojection algorithm. 
Due to the presence of varying spatially dependent absorption 
within the sample, fluorescent protein or fluorescence 
molecular probes distribution reconstructions can be obtained 
using a weighted method based on Born normalized approach 
[28,30].  

HDR imaging has recently been proposed for OPT by 
different groups [31,32]. The methodology is similar to the one 
described above, and image fusion of multiexposure projections 
of absorption signal are taken to increase the dynamic range of 
single projections and better resolve contrast elements. The 
technique has been used by Fei et al. [31] for reconstruction of 
embryonic vessels in fixed stained zebrafish demonstrating its 
ability to resolve fine details deep inside the organs without the 
need for any clearing.  

A similar approach based on image fusion, but less data 
intensive compared to the one cited above, was also used by 
Cheddad et al. [32] for imaging stained mice organs. In Fig. 9 a 
comparison between a reconstruction obtained using 
conventional OPT vs image fusion IF-OPT is shown, 

emphasizing the benefits in using this approach for better and 
accurate reconstructions.  
  

IX. CONCLUSIONS 

The distribution and concentration of fluorescent protein 
expression can vary considerably over several orders of 
magnitude in biological specimens. Developing methods to 
acquire data over a larger dynamic range and displaying this 
data in its correct spatiotemporal coordinates is highly 

desirable. We here present a review of recent progresses in high 
dynamic range fluorescence imaging at the microscopic and 
macroscopic scale. We expect these technologies to gain 
importance as current imaging trends are aimed at capturing 
cellular distribution information at the whole organ level 
[33,34]. Other possible applications involve in vivo studies for 
quantification of drug pharmacokinetics.  
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