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Abstract—Laser scanning microscopy is a powerful imaging
modality ideal for monitoring spatial and temporal dynamics
in both in vitro and in vivo models. To accurately resolve
dynamic changes, particular to the neuroimaging field, fast
acquisition rates are in great need. Unfortunately, the video-
rate acquisition required to capture these changes comes with
a trade-off between resolution, high spatial distortion, and low
signal-to-noise ratio due to the electronics and Poisson noise. By
combining microscopy fast acquisition methods with a Generative
Adversarial Network (GAN), we show here, for the first time, that
video-rate image acquisition, up to 20x the speed of equivalent
standard high resolution acquisition, can be obtained without
significant reduction in image quality. Specifically, we present
a GAN based training approach that is able to simultaneously
1) super-resolve, 2) denoise and 3) correct distortion on fast
scanning acquisition microscopy images. In addition, we show
that our method generalizes on unseen data, requires minimal
ground truth images for training and can easily be fine-tuned on
different biological samples.

Index Terms—Video-rate microscopy, GAN, Deep learning,
Computer vision, Minimal data

I. INTRODUCTION

Optical imaging modalities are ideal for in vitro and in vivo
single-cell phenotypic screening [1]. In particular, confocal
and multiphoton laser scanning fluorescence microscopy have
become fundamental imaging tools, offering high spatial and
temporal resolution [2]–[4], extended tissue penetration depth
[5]. When used in combination with fluorescent proteins, these
methods offer the capability to increase our knowledge and
understanding of both cellular and molecular phenomena [6]–
[9].

Both these techniques are typically based on single point
axial scanning and allow for optical sectioning and 3D imaging
[3]. While many scanning mechanisms are available such
as acousto-optical deflectors, Nipkow discs, or digital mirror
devices, galvanometric scanning is by far the most straight-
forward and popular scheme. In a standard laser scanning
mode acquisition, the position of the raster scan is controlled

by two galvanometric-based scanning mirrors oriented at 90
degrees with each other [10]–[12]. One of the two mirrors
operates in raster mode in a unidirectional way controlling
the horizontal scanning, while the other controls the vertical
deflection [13]. The laser beam is then focused to a diffraction-
limited point and moved over time in space (Fig. 1a-c) where
it describes a flat-plane shaped support covering the field of
view to be imaged [14]. Images are finally reconstructed from
the illuminated sample on a pixel-by-pixel basis by collecting
fluorescence-emitted photons created along the raster scan
path and by converting them to electric signals by means
of a photomultiplier tube (PMT). In this way virtual optical
sectioning through the sample [3], [15] can be performed and
three-dimensional reconstructions can be obtained.

While galvanometric scanning provides accurate high axial
resolution and increased SNR due to the reduced background
scattering signal, it is also very slow with strong constraints
on the scanning speed. Image acquisitions at these frame rates
(0.1-0.5 frames per second) are affected by strong motion
artifacts due to physiological motion [16]–[19] and can not
help in resolving fast dynamic biological changes.

A. Improving acquisition rates

Acquisition rates can be slightly improved by increasing
the unidirectional speed of the galvanometer and reducing the
number of acquired pixels. This problem has been previously
approached and the loss of image resolution mitigated using
super resolution neural network approaches [20]. In addition,
it is important to bear in mind that increasing the acquisition
speed always translates in a reduced amount of light collected
by the detector, which results in very noisy images. A trade-
off is therefore always present between the necessity to work
at high speed acquisition and the inevitable reduced amount of
light which accompanies this modality. In microscopy, this is
known as the “eternal triangle of compromise” between speed,
sensitivity, and resolution.



Fig. 1. Acquisition imaging scheme and processing pipeline. (a) Unidirectional scanning microscopy raster scan path. (b) Resulting undistorted image obtained
on a pixel-by-pixel basis. (c) Position of the scanning mirror as a function of time, during line acquisition. (d) Bidirectional video-rate scanning microscopy
raster scan path. (e) Resulting distorted image. (f) Distortion along the edges of the images are caused by the nonlinearity of the scanning galvo. (g) Proposed
processing pipeline. (h) Starting from a video-rate image (input), image distortions are corrected, the noise mitigated and a new resulting upscaled image
(prediction) is obtained. The obtained predictions are then compared to the ground truth HR images.

B. Video-rate acquisition

A possible way to increase acquisition rates further consists
in using a bidirectional scanning configurations [21], [22].
Instead of scanning the laser beam exclusively in the same
direction, the beam is moved back and forth multiple times.
Consequently, within an image, odd lines are scanned from
left-to-right while even lines are imaged from right-to-left,
effectively doubling the scan rate of the acquisition.

These faster acquisition rates in the video-rate range can
be reached when operating in resonant scanning mode [21],
[23]–[26] but at the price of significant image distortion, on
top of the increased accompanying noise. In this configuration,
a resonant scanning mirror is used in place of the slow servo-
controlled one for the horizontal linear scanning, leading to
imaging frame rates on the order of 30 fps at several fields of
view. Unfortunately, one inherent disadvantage of bidirectional
imaging is that it introduces spatial distortions in the acquired
images due to the fact that the mirror oscillates back-and-forth
with a speed that is a sinusoidal function of time (Fig. 1d-f).

Despite these challenges, this imaging modality is extremely
valuable in a number of settings. For example, at this increased
frame rate, one can effectively study blood cell trafficking in
capillary networks [19], [27], [28], record in vivo neuronal
activity [29]–[33], obtain acquisitions of multigigabyte-sized
whole slides accelerating histopathological data acquisition,
and also facilitate whole organ mapping at the microscopic
level [34], [35]. Thus, it is critical to address the challenges
presented by video-rate acquisition modalities as we do so here
with a deep learning approach, in order to improve overall
image quality and fidelity.

C. A deep learning framework for fast acquisition.

The problem we intend to address in this work is how
to better reconstruct image data obtained in fast (video-rate)
acquisition modalities and mitigate the accompanying noise
and distortion effects intrinsically present (Fig. 1g-h).

Deep learning super-resolution methods have shown signif-
icant promise in recovering high resolution images from noisy
low resolution images acquired at faster scanning rates. These
deep learning methods often achieve state-of-the art results on
super-resolution tasks [36] and range from early Convolutional
Neural Networks [37], [38] to the recent promising approaches
using Generative Adversarial Networks (GANs) [39], [40].
GANs have demonstrated to be capable of enhancing visual
details with remarkable resolution. For a survey on deep learn-
ing methods in computer vision, we refer the reader to [41].
Recent works in deep learning microscopy range from bright-
field microscopy [42], [43] to fluorescence microscopy [43],
[44]. Manifold et al. [45] have demonstrated that deep learning
is effective at super-resolving and denoising microscopy im-
ages. Wang et al. [46] have showed that deep learning enables
super-resolution in microscopy, while Ouyang et al. [43]
have demonstrated that deep learning can accelerate super-
resolution localization microscopy. However, these approaches
typically focus on images acquired without distortion effects,
which are typically present in images collected in galvo-
based bidirectional video-rate acquisition mode as described
in Section I-B.

Here, we specifically introduce a framework to acquire
microscopy images at video-rate and examine the efficacy of
deep learning Generative Adversarial Networks (GANs) on
mitigating the trade-offs introduced through video-rate acqui-
sition (Fig. 1g-h) . Our main contributions are the following:



• We train a GAN model that is successfully able to
simultaneously 1) super-resolve, 2) denoise and 3) cor-
rect distortions on fast scanning acquisition microscopy
images.

• We demonstrate that very few high resolution images
(“ground truth” HR images) are required to successfully
train an accurate deep learning super resolution model.

• We show that our GAN approach generalizes well on
unseen, unrelated microscopy data with minimal fine
tune training, a crucial feature for a real-life practical
implementation on generic biological specimens.

II. DATA COLLECTION

A. Distortion, noise and fast acquisition

As noted in Section I, acquiring images at video-rate scan-
ning speed introduces two main effects: distortion and noise.
The distortion effects introduced in video-rate acquisition are
due to the motion of one of the two oscillating mirrors in
bidirectional imaging. The mirror gradually accelerates and
decelerates as it moves through its cycles (Fig. 1f), slowing
at the edges where it changes in direction, and reaching a
maximal speed in the middle of the scanned field [48]. Such
a pattern leads to multiple implications. Pixels at different
locations map different specimen areas (bigger at the center,
smaller at the edges) causing a space-dependent blur and
giving rise to an image which appears visually stretched
toward the edges [13]. In addition, image rows display a
horizontal shift between adjacent lines as microscopes are
not designed to accurately compensate for this uneven motion
(Fig. 1e).

Apart from the geometrical distortions, the fluorescence sig-
nal acquisition process is inevitably affected by several sources
of noise ultimately affecting the system performances and
the images signal-to-noise ratio (SNR). In standard imaging
condition, acquisitions can be optimized by choosing appro-
priate setup parameters, such as increasing the integration time
or averaging multiple times, leading to high image quality
collection which is crucial to allow quantitative information
extraction and analysis of complex dynamic cellular events
[14]. Unfortunately, high acquisition speeds inherently reduce
the amount of light collected by the PMT, which results in
very noisy images. A trade-off is therefore always present
between the necessity to work at high speed acquisition and
the inevitable reduced amount of light which accompanies
this modality. Some noise contributions are due to the imaged
sample with the presence of scattering and/or autofluorescence
signal components, while others can be traced to the system
optical components (e.g. stray light detection, filter bleed-
through, etc). But above all, the more relevant sources of
noise components are shot noise and dark noise. Shot noise,
also known as photon- or Poisson noise, is independent from
the detecting system and represents the fundamental limit on
noise performances. This heterostocastic noise component is
signal dependent and inherent to the statistical uncertainty
in the arrival of the fluorescence photons at the sensing
detector [14], [49]. It is particularly cumbersome at low photon

fluxes in cases such as bidirectional or resonant scanning.
Dark noise is another source of noise which is not related
to the photon flux incident on the detector. This noise is
dependent on the detector’s temperature and the exposure time
and tends to become predominant at very low photon fluxes
[50]. As a result, fast acquisition microscopy images generally
suffer from 1) severe distortion artifacts which can not be
straightforwardly compensated, 2) they present low SNR due
to the Poisson noise and the reduced photon numbers acquired
during each voxel effectively reducing the detector’s bit depth,
and 3) frequently present a reduced number of sampling pixels.

All these factors are very difficult to correct separately, and
such an approach generally leads to a sub-optimal solution.
For instance, it is possible to correct for the misalignment
and the blur, by applying a complex non-uniform registra-
tion. However, further processing with a denoise algorithm
should be designed to work on a transformed version of the
noise, which is no longer well approximated by a Poisson-
Gaussian random variable. In addition, deriving for such a
noise a variance stabilization transformation along with its
unbiased inversion is also an intricate task. Alternatively, also
swapping the registration and denoise steps is unsuitable. In
fact, due to the un-matching of the image lines, the state of
the art denoising algorithms based on patches-matching, e.g.
BM3D [51], [52], would lose efficacy in finding similarities
among and within image patches. This leads to a less sparse
representation of patches, resulting in a loss of performance.
All these considerations indicate how it is better to avoid the
use of a cascade of process driven models in favor of an all-in-
one data-driven approach based on deep learning as illustrated
in the introduction.

TABLE I
COMPARISON OF IMAGE ACQUISITION

Acquisition
Type

Frame
Rate

Scanning
Mode

Pixel In-
tegration
Time (µ
sec)

Image
Size
(pixels)

Pixel
Size
(µ
m)

HR
(averaged)

0.08 Unidirectional 10 512x512 0.2

(LR + Noise
+ Distortion)

20 Bidirectional 0.5 256x256 0.4

B. Our Data

To demonstrate the capability of our image processing
approach we used two different samples showcasing biological
features at different scales: a microscope slide (FluoCells,
Invitrogen) containing BPAE cells with mitochondria stained
with MitoTracker Red CMXRos (sample A), and a separate
H&E stained histological section of the small and large mouse
intestine (sample B). We chose to image these two samples
because one (sample A) consists of 1) very small features
extending few pixels in size within the acquired images
and 2) present high image contrast, while the other (sample
B) tends to showcase distinct features over large areas of
distributed signal. High resolution HR representative images



Fig. 2. Scheme of principle for the training of our GAN. The training is divided into three distinct steps. In step 1, the U-net generator is trained. In step 2,
the critic is trained to distinguish between real high resolution images from the fake images generated by the trained generator. In step 3, the GAN is trained
by simultaneously training the generator and the critic.

of the two samples are given in 3 together with an histogram
representation of their fluorescence signal distribution within
the dynamic range of the detector.

Fig. 3. Representative images of sample A (a) and sample B (b). (c,d)
Pixel-by-pixel fluorescence intensity histograms for sample A (c) and B (d)
respectively. The red bar indicates the image background level.

All images were acquired in confocal mode using a cus-
tomized Olympus FV1000 system based on a BX61-WI con-
focal microscope (Olympus America). For data collection, we
used a XLUMPLFLN 20x water immersion (NA 1.0, Olympus
America, 2mm WD) imaging objectives. MitoTracker has

a maximum excitation at 554nm and a 576 nm maximum
emission and was excited using a 559nm diode laser. Fluo-
rescence was collected using an appropriate combination of
beam splitters (SDM560) and emission filters (BA575–620).

High resolution, ground truth images (HR, Table I) were
acquired at a planar resolution of 0.2 microns/pixel (512x512,
zoom factor x6, 106x106 microns field of view). To decrease
the overall noise within the image, the integration time was
kept high (10 microsecond/pixel), the PMT voltage was kept
low and images were averaged 4 times.

To maximize the frame-rate acquisition speed, low reso-
lution (LR) images acquired at fast speed in bidirectional
mode in video-rate mode ((LR+Noise+Distortion)=VideoRate,
Table I) were collected over the same field of view as for
the ground truth images HR but with 1) a reduced number
of pixels (256x256) corresponding to a planar resolution of
0.4 microns/pixel, 2) a lower integration time (0.5 microsec-
onds/pixel) and 3) higher PMT voltage to increase the signal.
Series of 100 VideoRate images were acquired for each ground
truth image HR over the same field of view, in order to increase
the number of noisy images for the training.

III. METHOD AND RESULTS

A. Neural Network Algorithm

Our neural network algorithm for training is a fast.ai
version of the generative adversarial network [53]. GANs
were introduced by Goodfellow et al. in [39] and have been
used to achieve state-of-the-art performances on various super-
resolution tasks [43], [44]. GANs simultaneously train two
competing neural network models: a generator and a critic,
in order to generate new, synthetic instances of data that



pass for real data. The generator will try to capture the data
distribution by making new images similar to the images in
the data set, while the critic will try to distinguish real images
from the fake ones the generator produces. Our generator is a
ResNet34-based U-net [54] in the form of encoder-decoder
with skip connections. The encoder downsamples an input
image and the decoder upsamples the image back to its original
size. The U-net generator uses a ResNet34 pre-trained on
ImageNet as a backbone for the encoder. Furthermore, we
use MSE loss, progressive resizing, and cyclic learning rates
with momentum. See [55] for more details on the specific U-
net architecture. In addition, we also apply data augmentation
techniques such as random zoom, lightning, and contrast
changes to increase the size and variety of our training data.
We avoided heavy distortion augmentations such as flip, shift,
and warp in order to avoid collision with the spatial distortions
introduced in video-rate acquisition process. We found these
heavy distortions actually hindered model performance.

We divided the training of our GAN into three steps as
visually illustrated in Fig. 2 in order to facilitate the task of
training a stable GAN model. In step 1, we train the U-net
generator using MSE loss to achieve fast microscopy super-
resolution on our training data. Next, in step 2, we train a critic
to distinguish real high resolution images from the fake images
generated by our trained generator using corresponding lower
resolution images. Finally, in step 3, we train the full GAN
by simultaneously training the generator and critic models that
were pre-trained in steps 1 and 2. For more details on fast.ai
GAN and its training method, we refer the reader to [53].

B. Metrics and evaluations.

To assess the quality of the GAN-based image reconstruc-
tions we have selected two metrics widely used in image
processing and appropriate for our task: the peak signal-to-
noise ratio (PSNR) and the structural similarity index (SSIM)
[56], [57]. PSNR is commonly used to measure the reconstruc-
tion quality of lossy transformations (e.g., image compression,
image inpainting) and is currently the most widely used
evaluation criteria for super-resolution models. The PSNR is
typically expressed in terms of the logarithmic decibel scale
and is calculated between the original and the reconstructed
image: the higher the PSNR, the better is the quality of the
reconstructed image. SSIM instead is proposed for measuring
the structural similarity between images, based on three rela-
tively independent comparisons, namely luminance, contrast,
and structure. Since SSIM evaluates the reconstruction quality
from the perspective of the human visual system (HVS), it
better meets the requirements of perceptual assessment [56],
[58] and thus widely used by super-resolution models. The
SSIM metric-range extends from -1 to +1, and equals +1 when
the original and the reconstructed image are equal. For a more
comprehensive review and a precise mathematical definition of
both PSNR and SSIM, the reader is referred to [56].

It is also clear that any finite set of metrics may not
capture the quality of the super resolution for the microscopy
community. We therefore also provide here representative

sample images to demonstrate the capability of our GAN-
based image reconstructions to pick up both the coarse and
fine grain structures present within the images.

C. Simultaneous denoising, super-resolving, and distortion
removal.

We have trained the GAN model on 6,000 paired images
of mitochondria (sample A) acquired at video-rate speed
(VideoRate images, Table I). We used 5,600 paired images
for training and 400 for validation. In Table II we present the
average structural similarity (SSIM) and the peak signal-to-
noise ratio (PSNR) metrics calculated on this validation set,
for both our GAN model as well as a simple baseline bilinear
upsample model for comparison purposes. The results we have
obtained demonstrate the very strong capability of our GAN
model to simultaneously super-resolve, denoise and remove
distortions from the images in the validation set. To better
evaluate the generalization of our deep learning model, we
tested our model on a new unseen test set of 192 paired images
that were never used during the training. The box-plot in Fig. 5
shows the distribution of the newly obtained SSIM and PSNR
metrics considering this test set. We have found a mean value
of 0.87 and 29.73 for the SSIM and PSNR respectively (Table
II). In addition to a vast improvement over the baseline bilinear
model, these results fall within the range (25-32 for PSNR
and 0.7-0.9 for SSIM ) of other successful and recent deep
learning microscopy results see [45] for PSNR and [36] for
SSIM and PSNR. This is the first important piece of evidence
that our GAN model is capable of simultaneously super-
resolve, denoise and remove distortion from images obtained
at video-rate acquisition speed. We also present in Fig. 4, a
representative visual example of the outstanding improvement
of the GAN image (prediction) over the VideoRate image
(input), and how closely the prediction matches the ground
truth high resolution image HR. The exceptional recovery of
the mitochondrial features within the prediction image is also
better emphasized in greater details in the zoomed areas of
Fig. 4d-f.

TABLE II
PERFORMANCE ON VALIDATION

Model SSIM PSNR
Bilinear 0.521± 0.071 22.65± 2.42

GAN 0.873± 0.038 29.73± 1.635

D. Optimal number of paired images

In fluorescence microscopy, gathering a large amount of
paired images is not always feasible, recommended, and/or
practical. It would therefore be useful to see if good predic-
tions could be obtained with a reduced number of images in the
training dataset, with the intent of limiting the training process
during normal acquisition sessions. We have seen that our
GAN model, introduced in section III-C and trained on 5600
paired images, was able to effectively simultaneously super-
resolve, denoise and correct distortion on images obtained at



Fig. 4. GAN predictions on typical acquired images. (a) Representative
input image acquired at video-rate acquisition speed and heavily affected by
distortion and noise. (b) GAN prediction. (c) Corresponding target (ground
truth) HR image. (d,e,f) Analogue magnified images corresponding to the red
box area indicated in (a).

Fig. 5. Box plot of the SSIM (Left) and PSNR (Right) metrics on a new
unseen test set of 192 paired images obtained on Sample A. For comparison
a simple baseline bilinear upsample (cyan), is shown in addition to our GAN
model (yellow).

video-rate acquisition speed. We now explore the sensitivity of
our performance metrics as the number of paired images used
in the training set decreases. The results are given in Fig. 6 and
Table III and clearly show how the metrics on the predicted
images change as we decrease the number of paired images
from 5600 to 200. From these results, it is clear that is there-
fore possible to strike a balance trade between efforts spent
on acquiring enough images to train on and image accuracy.
In this example, 14 ground truth images each one with 100
temporal images to train on the noise(1400) is a reasonable
minimum number of images necessary for obtaining adequate
fast microscopy image reconstructions (blue dot in Fig. 6).

TABLE III
METRICS ON MINIMAL NUMBER OF IMAGES

Number of paired images SSIM PSNR
5600 0.866 29.862
2800 0.85 28.894
1400 0.838 28.734
800 0.751 27.492
400 0.72 27.062
200 0.551 25.762

Fig. 6. SSIM and PSNR metrics calculated on the predicted images as a
function of total number of paired images. Blue dot indicates the minimum
number of images necessary for obtaining adequate fast microscopy image
reconstructions, at 1400 paired images. In this example, 1400 paired images
is a reasonable minimum number of images necessary for obtaining adequate
fast microscopy image reconstructions (blue dot in Fig. 6).

E. Generalization to unseen and unrelated biological struc-
tures

It is also imperative to understand how GANs generalize
to unseen and unrelated biological structures (e.g. nuclei,
cytoplasm, organelles, membranes, etc). In fact, biological
specimens tend not to be uniform across a large field of view,
with heterogeneity in cell populations, organization, structure,
and signal. To measure the generalizability of our model,
we acquired a completely new dataset of 848 paired video-



rate images taken on an histological section of the mouse
intestines (Sample B, Fig. 7). As noted in section II-B, this
sample is vastly different in physiology and morphology from
the original mitochondria dataset (Sample A). To evaluate
performance, we used a GAN model, previously trained
on Sample A, and directly applied it to the new dataset.
Separately, we evaluate the benefits of model fine-tuning by
evaluating image reconstruction performance on a model fine-
tuned with both 400 and 800 paired images from sample B
itself (GAN Finetuned4, and GAN Finetuned8 respectively).
In Fig. 7, we present representative visual results obtained
by the direct application of the model with no fine-tuning
(Fig. 7c) and one fine-tuned on 400 paired images (Fig. 7d).
As clearly evident, image artifacts present in the predictions
obtained without fine tuning (Fig. 7c) are absent in the one
fine tuned with 400 paired images (Fig. 7d). This provides
promising visual evidence that with minimal fine tuning we
can achieve robust image reconstructions on vastly different
biological samples and within large imaging field of views.
We also note the promising metrics given in Table IV. Here,
the mean and the standard deviation on the SSIM and the
PSNR are calculated for all three models as well as a baseline
using bilinear upsampling on an unseen test set of 48 paired
images from Sample B. In addition to the clear improvement
over bilinear upsampling, we see that light fine tuning can
result in SSIM scores in the .7-.9 ranges and PSNR scores
above 25 as well.

TABLE IV
PERFORMANCE ON TEST SET

Model SSIM PSNR
Bilinear 0.52± 0.059 22.03± 3.277

GAN 0.69± 0.097 19.75± 5.066
GAN Finetuned4 0.76± 0.057 25.36± 3.461
GAN Finetuned8 0.7847± 0.049 26.65± 2.794

IV. CONCLUSION

We have presented here a new approach for combining
deep learning super resolution networks with fast acquisition
microscopy to achieve fast microscopy deep learning super-
resolution. Specifically, we demonstrate that bidirectional im-
age scanning provides a significant speed boost over previous
acquisition methods without any significant loss in image
quality when combined with GAN methods. This is con-
firmed both by image quality assessment metrics and more
importantly also by showcasing typical visual examples of
the outstanding improvements of the GAN model predictions
and the exceptional recovery of cellular features. Additionally,
we show that super resolution microscopy may not need a
large volume of data to train. In our study, we have observed
diminishing gains in performance when using only a quarter
of the number of paired training images. Lastly, We provide
evidence that our GAN approach has effective generalizability
(with light fine tuning) to new, unseen microscopy images.

To conclude, our deep learning approach is starting to
chip away at previous limitations of fast imaging microscopy

Fig. 7. Prediction on novel dissimilar unseen image datasets with minimal
or no fine tuning of the GAN model. (a) Representative input VideoRate
image obtained on sample B. (b) Corresponding ground truth image. (c,d)
Predictions obtained with the previously obtained GAN model, without fine
tuning (c) and with fine tuning (d).

including the fundamental triangle of compromise in mi-
croscopy. Our work demonstrates that it’s possible to now
acquire images at a greatly increased frame-rate without sacri-
ficing image quality. In our opinion, the proposed methodology
will allow microscopy researchers a cheap and easy new, open-
source tool to approach challenging imaging problems such
as the aforementioned examples (e.g. blood cell trafficking
in capillary network, capturing neuronal activity, etc.) where
video-rate acquisition is necessary to resolve fast dynamics
events, as well as to accelerate multigigabyte-sized whole
slides histopathological data acquisitions and whole cleared
organ mapping.
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