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Abstract—Super-resolving and de-noising video-rate acquisi-
tion microscope imagery can eliminate the need for practitioners
to choose between image acquisition speed and image quality.
This task provides a convenient use case for Generative Adver-
sarial Networks (GANs), which have demonstrated impressive
pixel-wise reconstruction metrics in microscope image super-
resolution tasks. However, the benchmarks which report these
metrics typically do so on low-resolution images generated
through simple synthetic degradations, which fail to recreate the
natural distortions imparted by experimental image acquisition.
Because most reported synthetic data generation pipelines rely
on the bicubic downsampling of a few high-resolution images,
networks trained to correct for this distortion eventually fail
downstream when required to super-resolve images containing
natural distortions. The literature therefore provides us with an
unreliable assessment of GANs’ ability to super-resolve micro-
scope imagery in the field. In this work, we present one of the
few examples of GANs successfully super-resolving a large cache
of experimentally gathered microscope imagery. For our main
result, we demonstrate a reliable baseline for the super-resolution
task using GAN, in which we obtain a peak-signal-to-noise ratio
(PSNR) of 29.21 and a structural similarity index (SSIM) of 0.845
by using all available image pairs and averaging across all sub-
datasets. To demonstrate robustness on this task, we present the
model with a blind super-resolution task, in which it achieves a
PSNR of 25.75 and SSIM of 0.676 after averaging across all
sub-datasets. To affirm our results as a reliable baseline, we
demonstrate that GANs can fail in the video-rate super-resolution
task even when trained on higher-order synthetic degradation
pipelines. We confirm this effect by training our model on purely
synthetic data, using the pipeline mentioned above, and testing
it on a single sub-dataset. In doing so, we observe a −0.06 loss
in SSIM and −0.75 loss in PSNR, accompanied by significant
quality degradation of the reconstructed images in the form of
severe distortion and artifact generation.

Index Terms—GAN, PSNR, SSIM, super-resolution, bicubic
downsampling

I. INTRODUCTION

Generative Adversarial Networks (GANs) have shown to

be effective tools in generating high-resolution synthetic im-

agery and super-resolving low-resolution imagery. Specializ-

ing in the latter are super-resolution networks such as Super-

Resolution Generative Adversarial Networks (SRGan) [9],

Enhanced Super-Resolution Generative Adversarial Networks

SRGan(ESRGan) [17], and Real Ehanced Super-Resolution

Generaative Adversarial Networks [15]. These models are typ-

ically applied to the super-resolution of general, un-specialized

image data sets. Both of these networks, for example, are

trained and tested on the DIV2k [1], FLICKR [10], and

OST300 [16] data sets. However, they are more infrequently

tasked with the super-resolution of medical imagery, and

microscope imagery in particular, seemingly and simply due

to a scarcity of data availability. For the handful of instances

in which SRGan variants have been applied to super-resolve

such specialized images, the authors have been required to

make small data sets work for their experiments. Some have

done this by applying simple down-sampling techniques (bi-

cubic, bi-linear) to high-resolution images to form their low-

resolution pairs [2], [4], [5], [14], while others have employed

more complex degradation models to mimic the noise distribu-

tion of a specific low-resolution imaging source [19]. The data

scarcity of high-resolution-low-resolution microscope image

pairs in super-resolution tasks, however, persists within this

field of research as a major challenge to the interpretability and

generalizability of the results produced. In lieu of a sufficient

number of ground-truth image pairs, researchers meet a fork

in the road: they must either train a model from scratch on

limited data, or train and test on synthetically down-sampled

data. Both of these choices confuse the interpretation and ap-
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plicability of research outcomes. In this work, we do not claim

to introduce any novel improvement to the super-resolution

task. Instead, we apply conventional techniques to a relatively

large cache of low-high-resolution image pairs. By doing so,

we provide one of the few real-world benchmarks for super-

resolving microscope imagery using GAN-based methods.

Moreover, through our attempt to super-resolve experimentally

gathered microscope imagery using a model trained solely

on high-order synthetic degradation pipelines, we highlight

the problematic nature of current synthetic data generation

approaches used to compensate data scarcity.

II. RELATED WORK

With paired-image scarcity being such a persistent problem

in microscope image super-resolution, current research seems

to obtain their low-resolution pairs in one of five ways:

applying simple downsampling to high-resolution images [2],

[4], [5], [14], [27], [28], [33], employing sophisticated gen-

erative networks or degradation pipelines [19], [22], [31],

[34], experimentally collecting them [7], [26], [29], [30], [32],

or using a combination of experimental and generated low-

resolution images [20].

Perhaps the most closely related to our work is that of [32],

which introduces a feedback (recurrent) module to the GAN’s

generator that reduces network overhead and produces iterative

losses as features are cycled through the module. A novel

Fourier frequency transform loss is also introduced to be used

alongside the typical perceptual, generator, and discriminator

losses. Their training strategy consists of a progressive super-

resolution task in which the model is trained to resolve

low-resolution 256 × 256 images to high-resolution images

1024 × 1024 for the first dataset. This same model is then

trained to resolve low-resolution 512 × 512 images of the

second dataset into high-resolution 2048× 2048 images. Both

datasets comprised 901 image pairs in total. Importantly, they

demonstrate that their method is able to outperform ESRGan

[17] across all super-resolution tasks. We note that changes

made to the architecture and augmentation pipeline of ESRGan

to produce RESRGan produce significant gains in perceptual

quality metrics [15], [17].

Others eschew experimentally gathered paired images in

favor of synthetic degradation pipelines. In certain instances,

these efforts have demonstrated that one can use a relatively

simple degradation pipeline, such as additive Gaussian noise,

to generate low-resolution data for the super-resolution task

and ultimately obtain higher signal-to-noise ratios than even

the ground-truths [34]. The quality of these resolved im-

ages have also been proven to correlate closely to expert-

analysis [22], [34]. Others employ physics-inspired generative

pipelines, such FluoGAN, to achieve expert-approved super-

resolved images or high-throughput enhancement [19], [20],

[31].

Despite these efforts to overcome the paired-image problem,

innovative methods nonetheless require the results produced

from super-resolution benchmarks using experimentally-

gathered paired-image data to demonstrate the scope of their

successes. Current literature attempts to benchmark these

results, and does so with impressive performance metrics, but

frequently only to the extent that their methods may be applied

to the super-resolution of synthetically-degraded images. Even

if these methods are tested on real-world low-resolution data,

there often isn’t a way to benchmark the success of the

proposed method without also doing the very thing which

the method set out to preclude - laboriously obtaining low-

resolution pairs. This even applies to successful efforts, such

as [34], which produce images with high signal-to-noise-ratio

but also oversmoothing.

The results of many interesting architectural changes or

training methodologies are undermined, at least temporarily,

by their dependence on simple degradation pipelines. One

method, for example, applies parameter interpolation between

a natural-image pre-trained ESRGan and a microscope-image

trained ESRGan to produce impressive super-resolution per-

formance metrics [4] without re-training their model. Yet their

training and testing pipeline use bi-cubic downsampled data,

which measures the ability of the network to resolve bi-

cubic distortions. Even within the pre-trained network itself,

an ESRGan, bi-cubic down-sampling is used in the pre-train

pipeline degradation pipeline [17].

Another method proposes small architectural changes to

SRGan in order to reduce checkerboard-pixelation patterns in

generated images, overfitting, and computation time. [2], and

succeeds in doing so. But by training and testing on a large

microscope image database, The Human Protein Atlas [23],

the network trains on bicubic down-sampled low-resolution

images. In this case, the data itself sets a too-easy standard for

super-resolution tasks. Another method improves SRGGAn’s

GAN and discriminator loss to improve robustness, but still

reports on down-sampled test sets [14].

[19], one of the aforementioned models which uses physics

inspired down-sampling, employs an SRGan to train an in-

stantaneous, on-chip super-resolver for microscope imagery.

However, due to the explored image acquisition method, low-

resolution counterparts for each high-resolution image were

unable to be. They therefore simulated low-resolution images

from high-resolution images based on the parameters of their

low-resolution acquisition system, using a simulating model

based on [18]. They prove that such a method can work

on both simulated and non-simulated low-resolution images.

Their results demonstrate relatively, but not exceedingly, high

performance metrics which seem to be characteristic of testing

on experimentally gathered low-resolution images. That is,

this work demonstrates less impressive results when its meth-

ods are actually tested on real-world low-resolution images.

It seems that models trained and tested on experimentally-

gathered low-resolution images may perform worse than mod-

els synthetically generated data [5].

Within the current literature, there are a few instances of

model improvements on large paired-image data sets. One

instance, however, is demonstrated in [7], which applies GAN

to super-resolve video-rate microscope images. Notably, [7]

applies their network to a relatively large set (5600 for
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training) of experimentally gathered, high resolution confo-

cal microscope images. They obtain one-hundred experimen-

tally gathered low-resolution (video-rate) images per high-

resolution image, thus allowing a faithful testing of the ability

of deep super-resolution networks on excessively noisy real-

world microscopy data. In doing so, they demonstrate im-

pressive and reliable results for benchmarking super-resolution

tasks on real-world microscope imagery.

III. DATA

To illustrate the range of our model we employ four data

sets to work with which we call MITO, MPM, MEM, and

NUC, and stand for “mitochondria”, “multiphoton mitochon-

dria”, “membrane”, and “nuclei”, respectively, comprising an

extension of the data presented in [7]. MITO, MEM, and NUC

are acquired through single photon confocal scans, and MPM

is acquired via multiphoton scans. Together they comprise

a total of 25,452 images of 252 high-resolution images and

25,200 low-resolution images. Individually they contribute a

somewhat imbalanced number of images to the overall set, as

seen in Table I.

TABLE I
COMPOSITION OF (PAIRED) DATA FOR TRAINING

DATA TRAIN VALIDATION TEST TOTAL

MITO 3600 1100 300 5000
MPM 3600 1100 2400 7100
MEM 3600 1100 1900 6600
NUC 3600 1100 1800 6500

Both high and low resolution images were obtained from an

Olympus FV1000 system employing a confocal microscope

[7]. High-resolution images are acquired at a 512 × 512
resolution using a unidirectional scan with a frame rate of 0.08
frames per second, while low-resolution images are acquired at

a 256×256 resolution using a bi-directional scan with a frame

rate of 20 frames per second [7]. Both low and high resolution

images are affected by various sources of noise, including

system-induced noise, scattering, and auto-fluorescence signal

noise, with the prior experiencing higher rates of distortion.

However shot noise and dark noise present as the major

sources of quality degradation in the low resolution image

acquisitions [7]. Their effects are assumed to comprise a

significant proportion of the noise seen in the low-resolution

images [7], as seen Fig. 1.

IV. METHODS

A. RESRGan

RESRGan, or Real Enhanced Super Resolution GAN, de-

scends from the Super-Resolution GAN family [9], [15], [17].

It uses a “residual in residual dense block” generator [17],

a a U-Net discriminator [12], [13], [15] with ten layers,

spectral normalization, and skip connections. It also employs

relativistic [8] and perceptual loss, as well as perception-PSNR

Fig. 1. Examples of low-resolution-high-resolution paired images from the
working data set. From left-to-right: MITO, MPM, MEM, NUC. Best viewed
on a computer.

based network interpolation which balances perceptual and

pixel-wise image fidelity [15]. During its training, RESRGan

introduces a complex degradation process in two stages.

In the first stage, several forms of degradation are applied

to the image; namely, isotropic and anisotropic Gaussian

blurring, 2D sinc filtering, bicubic, bilinear, area resizing,

Gaussian noise, poisson noise, color noise, gray noise, and

JPEG compression . In the second stage, called “higher-

order degradation”, a second layer of blurring, resizing, noise,

and JPEG compression and 2D sinc filtering are applied.

This complex degradation process is meant to produce a

blind super-resolver for real-world imagery in RESRGan [17].

Unsurprisingly, it demonstrates distinct visual and metric-

based improvements over its predecessor. We refrain from

explicating all modifications to the original GAN architecture

[23] which RESRGan makes, as this model’s deployment is

well documented in super-resolution tasks and does not stray

from the basic workflow of GAN [23].

B. Perceptual Image Quality Metrics

The use of perceptual image quality metrics play a cru-

cial role in assessing generated image quality for the super-

resolution GAN family [15], [17]. In particular, ESRGan and

RESRGan use the Perceptual Index [3], a linear combination

of Ma’s score [25] and the NIQE score [11], to judge the

naturalness of generated images. They propose using this score

to balance the pixel-wise quality metrics which tend to produce

unnatural artifacts in generated images. We omit the use of the

Perceptual Index used in favor of two separate image quality

scores, the Naturalness Image Quality Evaluator (NIQE) [11]

and the Frechet Inception Distance (FID) [6]. We note that

in using these scores to assess microscopy images, we depart

from the natural image distribution which both metrics derive

from. The scales of our scores are therefore different from

those of [17]; in fact, they are much higher, suggesting poorer

image quality overall. However, we notice that NIQE and FID

seem to be highly correlated with more faithful reproductions

of ground-truth images. We therefore use them to guide our

hyper parameter selection, as suggested in [17] and [15].
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C. Training Scheme

We train two models total. For the first, we employ a

RESRGan model, pre-trained on natural image data sets, to

fine-tune on the full MITO data set. We then use this newly

fine-tuned model to separately finetune on the rest of the data

sets. That is, the individual fine-tuning processes for NUC,

MPM, and MEM begin fresh from the model fine-tuned on

MITO. Our second model is used to test the performance of a

model trained only on synthetic data. For this model, we train

on the high-resolution images of the MITO data set, using the

complex synthetic data generation pipeline of RESRGan to

create low-resolution ground truths. We do not perform any

few-shot testing for this model.

Respectively, we label them RESRGan-Base (RESRGan-B)

and RESRGan-Synthetic (RSRGan-S). For the base model, we

take the approach of [7] in testing the capability of the model

on few-shot tasks. We do so by selecting random subsets of

each training data set consisting of 200, 400, and 800 paired

images. This idea is illustrated in Fig 2. Note how this process

spawns successive permutative training schemes across all

few-shot and full-shot tasks and data sets.

Fig. 2. Successive Fine-Tuning Explicated

This differs from that of [7], as we test the robustness on

200 paired images for all data sets. Moreover, we decrease the

baseline number of total paired training images from 5600 to

3600 for the full model, and increase our validation size from

400 to 1100. All models are trained on a maximum of 10000

iterations, with an early stopping of 500 iterations for low-to-

medium learning rates and 1000 iterations (as a warm up) for

high learning rates. We use no data augmentation techniques.

The overall process of our training strategy is outlined in Fig.

3.

D. Objective

In the previous section, we identified RESRGan-B and

RESRGan-S as the two models which we trained on purely

experimental and purely synthetic data, respectively. The

purpose of the first experiment is to continue expanding

baselines for GAN-based microscope image super-resolution

tasks, by grounding their results in large sets of experimen-

tal image-pairs. While this benchmark is specific to video-

rate laser scanning confocal microscope imaging, it’s able to

Fig. 3. Training Strategy Overview

set standards for GAN-based super-resolution specific to (1)

the severity of noise induced by video-rate acquisitions, (2)

the effect of natural image model pre-training, and (3) the

amount of experimental data necessary for successful super-

resolution. Our hope is to aid practitioners in benchmarking

novel methods that move us away from a dependence on

painstakingly acquired low-resolution data. In this way, we

can alleviate researchers, pursuing things such as unsupervised

synthetic data generation, of the burden of having to re-train

and benchmark their models on experimental data that doesn’t

exist.

The purpose of the small experiment using RESRGan-S

is to demonstrate how despite training on the complex and

compounded synthetic data degradation pipeline of RESRGan,

which was built as a blind super-resolver for generalized

noise [15], we’re still unable to capture the noise distribution

of video-rate imaging. While several works have proposed

well-formulated physics-grounded degradation or generative

pipelines [19], [20], [31], we continue to see a large number

of efforts to validate on bicubic downsampled data. We hope

to provide evidence here that this, in fact, does not generalize.

V. RESULTS

Here, we report the results for RESRGan-B and RESRGan-

S, the training methodologies of which are described in

the previous section. We note that RESRGan-B is the best

performing model, with RESRGan-S experiencing significant

performance degradation.

A. RESRGan-B

For all results in this section, we refer to RESRGan-B as the

model fine-tuned on the MITO dataset, i.e. the base model. If

RESRGan-B is followed by a number, this means that the base

model was fine-tuned on NUM × 100 paired training images

from the respective data set. RESRGan-BFULL refers to the

base model fine-tuned on all paired training images from the

respective data set.

Note that when RESRGan is present under another data sets

test performance results, that means we are testing the base

model’s zero-shot capabilities on that data set. That is, we
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test the MITO-trained model on a completely unseen data set

without any extra fine-tuning. In the special case where we

fine-tune the model on a subset of the MITO data, we label

this RESRGan followed by a number, e.g. RESRGan-2. Also

note that all fine-tuning was conducted with identical hyper

parameters to those of the base MITO-tuned model. Namely,

fine-tuning was conducted uniformly with learning rate 5 ×
10−4 and cosine-annealing scheduling, patch size 128× 128,

loss weights λ = 1× 10−1 and η = 1, and a 10,000 iteration

runtime.

Overall, the performance trends are somewhat surprising.

We notice either marginal improvements in performance when

using more training data, or even slight degradation. In most

cases, we see that moving from a zero-shot setting to two-

hundred training pairs notably improves performance metrics.

However, there is ambiguity in performance gains between us-

ing four hundred training pairs and the full data set. Although

SSIM seems to converge towards a stable result with access

to the full data set, we continue to see fluctuations in PSNR.

Generated images were judged not only on PSNR or SSIM,

but on perceptual quality metrics. Namely, we use FID and

NIQE to fine-tune the hyperparameter selection process, and

show that the incorporation of these metrics does, in fact,

seem to lead to more visually faithful reproductions of high-

resolution ground-truths. For example, the model with a

learning rate of 5e-4, a 64 × 64 patch size, and weighted

loss, which was validated on SSIM, obtained the highest

PSNR among all models. However, with a NIQE equal to

8.12 ± 0.044, it seemed to produce overly smooth or blurry

images with unwanted artifacts, or images which lacked small

but important details as seen in Fig. 4. Overall, we observe

this trend for models which produce high PSNR/SSIM as well

as high FID/NIQE.

Fig. 4. From left-to-right: (1)-(2) the ground-truth image and the area which
is being viewed, (3) the cropped area from the model with the highest
PSNR/SSIM, (4) the cropped area from our best model

The best model’s performance on the MITO test set, after

being fine-tuned on only MITO, is seen in II. We see in Fig.

5 the production of nearly-identical images.

For MPM, it’s notable that while performance seems to

improve with the amount of training data, it only does so

marginally. Moreover, the model doesn’t obtain a maximum

PSNR when trained on the full data set. We suspect that

Fig. 5. RESRGan-B on MITO

the structural similarity shared between MPM and MITO

contributes to this “plateauing” effect in MPM. Despite these

performance metrics, from a perceptual perspective the images

produced are nearing excellent, aside from a very small

amount of blurring in the generated image. Figure 6 shows

a comparison between ground-truth, low-resolution, and gen-

erated image. Looking closely, one can see both blur and

structural degradation in areas containing the most fine-grained

features.

Fig. 6. RESRGan-B on MPM

We also notice an interesting trend in the performance on

the NUC data set. It demonstrates (1) the largest content

performance gains between the zero-shot performance and

the fully pre-trained performance, and (2) the highest content

performance among all fine-tuning episodes. However the

fully fine-tuned model suffer in terms of perceptual quality,

outputting a NIQE of 9.75. This is in contrast to, for example,

the fully fine-tuned MEM model which outputs a NIQE of

5.42, but seems to suffer from lower content metrics as seen

in IV. Note the image generation fidelity of MEM in Fig. 7.

However, as seen in Fig. 8, there are clear problems with

the images generated on the fully fine-tuned NUC model.

Specifically, the model seems to identify features as noise,

and almost seems to be randomly guessing where the features

are.
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Fig. 7. RESRGan-B on MEM

Fig. 8. RESRGan-B on nuc

TABLE II
RESRGAN-B TEST PERFORMANCE ON MITO ACROSS FINE-TUNING

EPISODES

DATA MODEL SSIM PSNR

MITO

RESRGAN-2 0.860±0.002 27.87±0.119
RESRGAN-4 0.876±0.001 29.21±0.100
RESRGAN-8 0.864±0.001 28.49±0.099
RESRGAN-B 0.887±0.001 29.47±0.124

TABLE III
RESRGAN-B TEST PERFORMANCE ON MPM ACROSS FINE-TUNING

EPISODES

DATA MODEL SSIM PSNR

MPM

RESRGAN-B 0.853±0.001 28.26±0.019
RESRGAN-B2 0.856±0.001 28.33±0.018
RESRGAN-B4 0.862±0.001 28.47±0.018
RESRGAN-B8 0.861±0.001 28.55±0.018

RESRGAN-BFULL 0.863±0.001 28.50± 0.018

TABLE IV
RESRGAN-B TEST PERFORMANCE ON MEM ACROSS FINE-TUNING

EPISODES

DATA MODEL SSIM PSNR

MEM

RESRGAN-B 0.705±0.001 26.17±0.034
RESRGAN-B2 0.728±0.001 26.95±0.039
RESRGAN-B4 0.743±0.001 28.05±0.032
RESRGAN-B8 0.745±0.001 28.01±0.026

RESRGAN-BFULL 0.752±0.001 28.13±0.031

TABLE V
RESRGAN-B TEST PERFORMANCE ON NUC ACROSS FINE-TUNING

EPISODES

DATA MODEL SSIM PSNR

NUC

RESRGAN-B 0.676±0.001 22.83±0.037
RESRGAN-B2 0.867±0.001 30.73±0.045
RESRGAN-B4 0.875±0.001 31.42±0.041
RESRGAN-B8 0.877±0.001 30.67±0.047

RESRGAN-BFULL 0.876±0.001 30.74±0.047

B. RESRGan-S

The impressiveness of RESRGan is captured by its RRDB

network, its powerful and relativistic discriminator, and its pre-

activation perceptual loss. Yet it also introduces a complex

data synthesizing pipeline used to facilitate the blind super-

resolution of distorted real-world images [15]. By using lim-

ited paired-image data sets to train RESRGan we essentially,

but almost necessarily, limit the model’s power in super-

resolving noisy images.

The issue in using synthetically generated data for our

purposes lies in the possibly large distance between the noise

distribution of un-specialized “real-world” data and the photon

noise present in our microscopy data. Because RESRGan

proposes a generalizable blind super-resolver whose power

lies in its higher-order degradation method, we test to see

if these degradations are able to capture the distribution

of photon noise that’s particular to video-rate microscope

imagery acquisiton. Because RESRGan includes photon noise

in its degradation process, we were curious to see if more

severe degradations of the high-resolution images were capa-

ble of capturing the subsetted noise distribution present in the

original low-resolution images. To this end, we omit the use

of paired images, and only use synthetically degraded high-

resolution images for low-resolution image pairings. We both

validate and test the model on the original, true low-resolution

images.

For this experiment, we only extend the tests to the MITO

data set, as the results observed were much less performant

than in other models. As seen in Figure 9, the model trained

only on synthetically degraded ground-truths fails when tested

on the original low-resolution images.

Fig. 9. Cropped ground-truth (left) compare to RESRGan-B (middle) and
RESRGan-S (right)
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We speculate that although photon noise is added to the

ground-truths to generate synthetic images, that either this

distribution of photon noise does not approximate that which

is present in the low-resolution images, or that the con-

junction of various types of degradations fails to super-set

the noise present in the low-resolution images. Although the

performance metrics in Table VI does not seem all too poor,

the image itself, as well as the perceptual metrics indicate

otherwise. We observe a NIQE of 7,14 but a FID of 104.91,

the latter of which is roughly 30 points higher than most of

our other models.

TABLE VI
TEST PERFORMANCE ON MITO (SYNTHETIC) VERSUS REAL

DATA MODEL SSIM PSNR

MITO RESRGAN-S 0.83±0.002 28.72±0.109
MITO RESRGAN-B 0.887±0.001 29.47±0.124

VI. CONCLUSION

We use a state-of-the-art super-resolution network to train

and test on a large cache of experimentally-gathered flu-

orescence microscope images, providing a benchmark for

future improvements to super-resolution tasks in fluorescence

microscope imaging.

We test whether the complex degradation process employed

by RESRGan, and utilized in blind super-resolution of natural

images, captures the shot noise of video-rate micro- scope

images. We demonstrate that such a network fails to resolve

experimentally-gathered low-resolution images even when the

degradation pipeline used is significantly more complex than

bi-cubic or bi-linear down-sampling.

We justify the need for either (1) bypassing paired-image

training completely, (2) using degradation pipelines which

simulate instrument noise, or (3) using larger experimentally-

gathered paired data sets when reporting results.
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