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Abstract of the dissertation

In recent years the implementation of Erbium-doped fiber amplifiers allowed to ex-
tend high-bit rate transmission to transoceanic distances. But the demand for an in-
crease in transmission capacity is unprecedented and grows continuously. Despite the
intrinsically small values of the nonlinear coefficient for silica, the nonlinear effects in
optical fibers can be observed even at low powers considering that the light is con-
fined in a relative small area over long (i.e. transoceanic) interaction lengths due to
the extremely low attenuation coefficient and the event of optical amplifiers. This is
the reason why nonlinear effects can not be ignored when considering light propaga-
tion in optical fibers. In the thesis we have studied different ways both to measure
the nonlinear coefficient in optical fibers and how to exploit nonlinearities in a useful
way in order to build switches or to perform measurements of different optical fibers
parameters (e.g. chromatic dispersion, PMD).
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Chapter 1

Introduction.

1.1 Introduction (english)

In recent years the implementation of Erbium-doped fiber amplifiers allowed to extend
high-bit rate transmission to transoceanic distances. Despite this achievement, the de-
mand for an increase in transmission capacity is unprecedented and grows continu-
ously. This demand can be accounted for in different ways, like for example increasing
the bit-rate per channel (time domain multiplexing, TDM), or by simply increasing the
number of channels transmitted along a single fiber (wavelength division multiplex-
ing, WDM). These two methods have different advantages and disadvantages, but
nonlinearities start to play an important role for both of them due to the amount of
power present in the fibers.

To have an idea of the powers involved in data transmission it could be really in-
teresting to find out as an estimate, what is the minimum amount of power we have
to send into a fiber at an entry point A in order to transmit the data at an exit point B
distant some kilometers (typically tens of km).

The first step in optical communications corresponds to the conversion from an
electrical input signal into an optical bit stream and usually this is done by direct mod-
ulation of a semiconductor laser. A non-return-to-zero (NRZ) modulation format is
normally used meaning that the pulse remains on throughout the bit slot and its am-
plitude does not drop to zero between two or more successive bits. Of course the
performance of data transmissions has to be characterized through a parameter. This
parameter is called bit error rate (BER) and corresponds to the average probability of
incorrect bit identification; for example a BER of 10−9 corresponds to an average 1 error
per billion bits.

So once the light is launched through the fiber, it will be detected at B by an optical

1



Chapter 1 Introduction. 2

receiver that converts the optical signal into an electrical one. The problem is to find
what is the required minimum average received optical power (or receiver sensitivity)
such that the signal will result to be error free. To note that the concept of error-free is
relative to the kind of transmission we are considering. In the case of voice communi-
cations, error-free transmission is defined to corresponds to a BER equal or better than
10−9. For more demanding data communications applications a BER of 10−12 could be
required. For an ideal detector (no thermal noise, no dark current and 100 % quantum
efficiency) 1 bits can be identified without error as long as even one photon is detected.
An error is made every time a 1 bit fails to produce even a single electron hole (e-h)
pair. For small number of photons (poissonian statistics) we can find that in order to
have a BER of 10−9 the average number of photons per 1 bits has to be greater than 20.
In terms of power that means (at 40 Gbit/s and at a wavelength of 1.55 µm) a minimum
power at the detector equal to 100 nW ie. -40 dBm (note that we are working using a
NRZ modulation format). Obviously most receivers operate well above the quantum
limit (typically 20 dB above). That means the minimum amount of power required in
order to detect a 1 is equal to -20 dBm. In a recent experiment performed at Alcatel
a 10 Tb/s record transmission capacity over backbone networks was achieved. This
was done using 256 channels in the 1.5 µm region (C and L band) spaced by 50 GHz.
If we propagate the signal along tens of km of optical fibers considering the natural
fiber losses (0.2 dB/km) a BER of 10−9 requires an input power at the entry of the fiber
line of 0 dBm. For 256 channels this will correspond to a total amount of power at the
entry of the fiber of 24 dBm. This if of course an optimistic estimate because in fact we
have to take into account even for the losses due to the components along the fiber line
(like connectors for example and the WDM and the PBS components that filters the
different channels in frequency and polarization respectively out from the fiber). So in
practice the power is of the order of Watts!! A further increase in power is required for
the case of more demanding data communications (BER of 10−12).

So how do these optical nonlinearities arise [1]? From a simple point of view we can
consider a material as made of a collection of charged particles: electrons and ion cores.
When an electric field is applied it will move these charges. The positive charges tend
to move in the direction of the field while the negative ones move into the opposite
way. For dielectric materials (glass in our case) the charges are not free to move and
only a slight misplacement will occur. This small movements (ion cores in one direction
and electrons in the other) will result in an induced electric dipole moment. Due to the
large mass of an ion core and the large frequency of the light (1013 - 1017 Hz) , it is
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only the motion of the electrons that is significant. Usually (Lorenz approximation) we
consider the potential in which the electron is immersed as harmonic. But for a high
electric field (i.e. high powers) higher order terms have to be included. This implies
that the induced polarization will not be linear in the electric field anymore (harmonic
approximation) but more generally (for silica) it is given by:

P = ε0

(
χ(1)E+χ(3)EEE+ · · ·

)
(1.1)

where ε0 is the permittivity of vacuum and χ( j) the j-th order susceptibility. The
term χ(1) is the dominant contribution to the polarization P and its effects are included
through the refractive index n [2]. The cubic term χ(3) is responsible for phenomena
like third-harmonic generation, four wave mixing and nonlinear refraction [2]. The
first two processes (processes that generate new frequencies) are usually not important
unless phase matching conditions are satisfied. Nonlinear refraction instead is always
present and deeply affects the propagation of intense light in an optical fiber. The elec-
tromagnetic wave passing along the optical fiber induces a cubic polarization which is
proportional to the third power of the electric field (see Eq. 1.1). This is equivalent to a
change in the effective value of χ(1) to χ(1) + χ(3)E2. In other words the refractive index
is changed by an amount proportional to the optical intensity [1].

ñ(ω, I) = n(ω)+n2I (1.2)

This intensity dependence of the refractive index (optical Kerr effect) is responsible for
numerous nonlinear effects.

To note that even if the value of the nonlinear coefficient n2 is quite small, nonlinear
effects in optical fibers assume a relevant importance due to the fact that the magni-
tudes of these effects depend on the length of the fiber along which the wave travels
and on the ratio n2/Ae f f , where n2 is the nonlinear refractive index of the fiber and
Ae f f the effective area of the lightmode. Despite the intrinsically small values of the
nonlinear coefficient for silica, the nonlinear effects in optical fibers can be observed
even at low powers considering that the light is confined in a relative small area (ca. 80
µm2) over long interaction lengths (transoceanic as mentioned at the beginning of the
introduction) due to the extremely low attenuation coefficient and the event of optical
amplifiers. This is the reason why nonlinear effects can not be ignored when consid-
ering light propagation in optical fibers. For what concerns the value of the nonlinear
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coefficient, due to its importance in the effectiveness of the nonlinear effects, Chapter 2
of the thesis presents an original measurements for this parameter.

Another manifestation of the intensity dependence of the refractive index occurs
through self-phase modulation (SPM) a phenomenon that leads to spectral broaden-
ing of optical pulses travelling along a fiber [2]. Note that SPM - as for most nonlinear
effects - is not necessarily detrimental but can also be exploited as for example by in-
teracting with the group velocity dispersion (GVD) to form optical solitons (i.e. pulses
that propagates with undistorted shape).

When two or more optical waves co-propagate they can interact with each other
through the fiber nonlinearity. This interaction gives rise to different phenomena like
stimulated Raman and Brillouin scattering, harmonic generation, and four wave mix-
ing.

Cross-phase modulation (XPM) is the analogue of SPM but this time the induced
phase depends not only on its own intensity, but also on the one of the other co-
propagating lightwaves [2]. The strength of XPM is different for the coupling between
two waves with different frequencies but the same polarization and the coupling be-
tween two waves with the same frequencies but different polarization states. Both
these effects are examined in Chapter 3 and exploited for the study of nonlinear polar-
ization rotation (Section 3.1) and for the implementation of an all-optical switch (Sec-
tion 3.2) respectively.

Another nonlinear effect that can be relevant in optical fibers is four wave mixing
(FWM). This phenomenon is not always present but appears only under appropriate
conditions (phase matching). This effect is devastating for WDM systems with equally
spaced channels as the generated frequencies coincides with a transmission channel,
leading to bit dependent interferences which degrade the transmitted signal. Chapter 4
is dedicated to the different aspects of FWM in optical fibers and how we can exploit
it in order to produce photon pairs in single mode fibers (SMF) (Section 4.1), to obtain
distributed measurements of chromatic dispersion in SMF (Section 4.2) and to obtain
longitudinal maps of the nonlinear coefficient in SMF (Section 4.3).

Chapter 5 finally concludes with a description of some other work the author was
involved with and not directly related to nonlinear effects in optical fibers. In Section
5.1 we report on a new setup dramatically increasing the sensitivity of near field optical
scanning microscopy. In Section 5.2 we report about the possibility to monitor the gain
inside an Erbium doped fiber amplifier (EDFA) by using an optical frequency domain
reflectometer (OFDR). In Section 5.3 we report on the polarization state evolution in
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the different fibers of a ribbon fiber. Finally in Section 5.4 a new type of polarization
mode dispersion emulator is presented.

In the following more detailed summaries of the different chapters are given.

1. In Chapter 2 we demonstrate a new method for the measurement of the nonlinear
coefficient n2/Ae f f in telecom fibers at 1550 nm.

As mentioned at the beginning of the introduction the implementation of
Erbium-doped fiber amplifiers allows for high-bit rate transmission over trans-
oceanic distances. At the same time, the technique of wavelength division mul-
tiplexing (WDM) is used to increase the transmission rate, leading to an impor-
tant amount of power inside the fiber. Because of the long distances and high
powers, optical nonlinearities due to changes in the refractive index (optical Kerr
effect) start to play a significant role. Among them, self-phase modulation (SPM),
cross-phase modulation (XPM), and four-wave mixing (FWM) are the most im-
portant. The magnitudes of these effects depend on the ratio n2/Ae f f , where
n2 is the nonlinear refractive index of the fiber and Ae f f the effective area of the
lightmode. It is therefore important to have a simple and accurate method for
the determination of this ratio. Different methods, based on SPM or XPM phase
shift detection using interferometric and non-interferometric schemes have been
proposed [3]. In this chapter, we present a different method based on the in-
terferometric detection of a phase shift using a self-aligned interferometer with
a Faraday mirror. This method has the advantage to be simple and to be all
fiber implementable. Moreover, fluctuations from environmental perturbations
present in the other schemes mentioned above are avoided. Another important
point is the comparison of n2/Ae f f (section 2.2) obtained with our method, for
Dispersion Shifted Fibers (DSF), Dispersion Compensating Fibers (DCF), and a
standard Single Mode Fiber (SMF) with the ones obtained by other institutions
on the same fibers. We show that the values found agree quite well with the
results from the different measurement methods employed by the other institu-
tions. In particular (Section 2.3) we compare our results with the SPM based cw
dual-frequency method [4, 5]. This method with its simple measurement setup,
gives the accurate value of n2/Ae f f according to the measurement conditions
given in Refs. [4]. A brief description of the CW dual method is given and we
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present an interlaboratory fiber nonlinear coefficient measurements for Disper-
sion Shifted Fibers (DSF). The values found are in good agreement among the
two methods.

We demonstrate too (Section 2.2) that our results are independent of the length of
the test fiber (on a 10 km range) even in the presence of large GVD which cause
some problems in other measurement methods [5].

2. In Chapter 3 we analyze the influence of XPM and SPM on the signal propaga-
tion.

• In Section 3.1 we present both a theoretical and experimental analysis of the
nonlinear polarization rotation in an optical fiber.

The potential of the nonlinear polarization rotation (NPR) to build ultrafast
devices has been recognized a long time ago and received considerable at-
tention since then. It has been proposed to exploit it for optical switches [6],
logic gates [7], multiplexers [8], intensity discriminators [9], nonlinear filters
[10], or pulse shapers [11]. However, an inherent problem to all these appli-
cations is the stability of the output state of polarization, generally subjected
to fluctuations of the linear birefringence caused by temperature changes
and drafts in the fiber environment. Of course, the same problem was also
encountered in the few experiments dealing with the characterization and
measurement of the NPR itself. In Ref. [12], the fluctuations of the output
polarization were too strong to allow a meaningful measurement of NPR in
a polarization maintaining fiber at 1064 nm, and in Ref. [13] , where 514 nm
light was injected into a 60 m long fiber with a beatlength of 1.6 cm, a com-
plicated arrangement had to be employed for the extraction of the changes
caused by temperature drifts. As the fluctuations become worse for fibers
with a large birefringence, and as the effect of NPR is proportional to the
inverse of the wavelength, it is hard to measure NPR directly in a polariza-
tion maintaining (PM) fiber at the telecom wavelength of 1.55 µm. In this
chapter (Chapter 3.1) we propose a method for removing the overall linear
birefringence, and therefore also its fluctuations, in a passive way by em-
ploying a Faraday mirror [14] (FM) and a double pass of the fiber under
test. To check how this -nowadays standard- method [15, 16, 17, 18] of re-
moving linear birefringence acts on the NPR, we present also in this chapter
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a simple model to calculate the action of linear and nonlinear birefringence.
Using this model, it is then easy to show that the proposed method removes
the overall linear birefringence only, whereas the nonlinear one, leading to
NPR, remains unchanged. After describing the experimental set-up, the re-
sults of our NPR measurements using a FM are presented also, along with
the predictions from our analytical model. The excellent agreement between
the two demonstrates that using the FM, the overall linear birefringence is
indeed removed completely, allowing to observe the NPR otherwise hidden
within the noisy background of polarization changes due to environmental
perturbations. This result also validates our method for possible implemen-
tation with a variety of other applications like the ones mentioned at the
beginning of this section, with the prospect of drastically increasing their
polarization stability.

• In Section 3.2 we demonstrate all-optical switching at 1.5 µm based on in-
duced nonlinear polarization rotation, in both a polarization maintaining
and a standard telecom fiber.

All-optical switching techniques based on the optical Kerr effect [8, 19, 20,
21, 22, 23] are very attractive in that respect due to the ultrafast Kerr re-
sponse [24, 25, 26] of less than a few fs. Indeed, an all optical Kerr switch
was demonstrated recently to read out a 10 Gb/s channel from a 40 Gb/s
TDM signal [6]. Besides the standard switch parameters like switching ratio,
insertion loss or switching time, the stability of the switch is an important is-
sue. Variations in the input control or signal polarizations as well as changes
of the intrinsic birefringence of the Kerr medium will affect the switch. The
variations of the input signal polarization can be dealt with by adopting a
polarization diversity scheme, like e.g. in Ref. [6]. In order to keep the
switch stable internally, the control pulse polarization should be kept as sta-
ble as possible by using a proper set-up. Moreover, changes in the signal
polarization in the Kerr medium (typically a polarization maintaining PM
fiber) due to changes in the intrinsic fiber birefringence have to be avoided
since they can greatly reduce the extinction ratio of the switch. An active
correction scheme (e.g. a polarization controller [12] with a feedback loop)
is typically not rapid enough to correct the fast, acoustical perturbations, and
may not work at all for large changes due to its limited range of operation.
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To avoid these problems, we use on one hand a non-interferometric and on
the other hand a passive stabilization scheme. In interferometric switches
like Sagnac loops or Mach-Zehnder interferometers (IF), the switching is
based on a phase-shift induced between the two different propagation di-
rections or arms, respectively. If the signal is not carefully launched into an
axis of a PM fiber, it will split into 4 different polarization modes, two in each
propagation direction or interferometer arm, respectively. In addition to the
phase-shift between the two different propagation directions or interferome-
ter arms, additional ’local’ phase-shifts between the polarization modes with
the same propagation direction (or within the same IF arm) will degrade the
switch quality. In the switch presented here, this problem is avoided by
uniquely using this ’local’ phase-shift between the two signal polarization
modes in a single fiber, thereby reducing the relevant mode number to two.
Having two modes only, we can then use a passive stabilization scheme that
works both for fast and slow, arbitrarily large changes in the fiber birefrin-
gence. Although in this work an optical fiber is used to induce a nonlinear
phase-shift, it should be noted that the stabilization scheme holds as well for
any other Kerr elements (e.g. semiconductor saturable absorbers SOA).

• In Section 3.3 we present a way to obtain the polarization coupling length,
an important parameter for the PMD probability distribution.

It is well known that single-mode communication fibers are birefringent
and that the orientation and the amount of birefringence are randomly dis-
tributed along the fibers. The corresponding polarization mode dispersion
(PMD) becomes therefore a statistical quantity, and not only its mean value
but also its probability distribution is important to assess the inferred sys-
tem impairments. This distribution depends on two parameters: the (mean)
local birefringence B and the polarization coupling length h, which is the
distance over which the E field looses memory of its initial distribution be-
tween the local polarization eigenstates [27]. In fibers having a length L long
compared to h, the probability distribution is Maxwellian with a mean PMD
value of B, whereas for coupling lengths approaching the fiber lengths, the
PMD statistic can change considerably [28]. It is therefore important to have
knowledge not only of the overall PMD but also of h and the beatlength
Lb. Here we present a novel way to directly infer the polarization coupling
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length from measurements of the nonlinear polarization rotation (NPR) in a
fiber.

3. In Chapter 4 we investigate FWM in optical fibers.

• In Section 4.1 we present a novel way to generate photon pairs.

It is well known that pairs of correlated photons entangled in energy and
time can be used as a resource for quantum information processing. Up till
now, photon pairs are mainly created in nonlinear crystals or waveguides,
using parametric down conversion, a nonlinear effect due to the second or-
der susceptibility χ(2). In this chapter instead, we propose to create photon
pairs directly in optical fibres, exploiting four wave mixing processes due
to the third order susceptibility χ(3). As mentioned at the beginning of the
introduction this term is responsible for FWM, third harmonic generation,
nonlinear refraction. The E dependence of the polarizability reflects on a
power dependence of the refractive index of the fiber, inducing a possible in-
termodulation between different optical signals. If two different signals with
frequencies ν1, ν2 are then launched into the fiber, the beatnote of these two
signals modulates the refractive index with a frequency (ν2 -ν1). Through
this modulation a third signal at the frequency ν1 will develop sidebands at
the frequencies

ν1 +(ν1−ν2) ν1− (ν1−ν2)

The situation in fact is much more complex and every possible combination
of the single frequencies can combine with each other. In a quantum repre-
sentation we can say that different photons annihilate to generate new ones
at different wavelengths. Different kinds of FWM are possible. The case in
which three photons with the same frequency annihilate to give rise to a new
one, is called “totally degenerate” FWM; the case of two photons with the
same energy that combines to give rise to two photons different in energy,
is called “partially degenerate” FWM. “Non-degenerate” FWM is present
when all the frequencies are different to each other. It is important to note
that as mentioned above not only energy conservation has to be satisfied
in the FWM process, but even phase matching conditions. For this reason
FWM is referred to as a “parametric process”.

In this chapter we concentrate mainly on “partially degenerate” FWM. In
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this process two pump’s photons are absorbed by the fiber and two photons
are created; one photon at a higher frequency than the pump and one at a
lower frequency. Usually low frequency waves are referred as Stokes waves.
High frequency wave as Anti-Stokes. As mentioned in the former section,
parametric processes are stronger when the process is phase-matched, i.e.
when momentum conservation is valid. It follows that due to the dispersion
of the refractive index, FWM is not always present but only when phase
matching conditions are satisfied. In a SMF fiber this conditions are always
satisfied when we work near λ0, i.e. the wavelength at which the dispersion
is equal to zero. If we consider now a pump at a wavelength near λ0 FWM
will create new photons at frequencies distributed symmetrically around the
wavelength of the pump. These photons are generated at the same time so
they are time correlated.

Now the advantage of creating photon pairs directly in optical fibres is that
we can avoid the losses due to the collection of pairs created in an external
source into the fibre. It also allows an all fibre operation, which is much
more practical for “real life” applications (e.g metrology). Unfortunately in
our experiment no photon pairs were detected. This could be due to the low
amount of power injected into the FUT and to the poor quality (i.e. signal to
background ratio) of the DFB laser. At the same time luminescence due to
the glass impurities is covering the signal. Improvements could be obtained
with an Erbium doped ring laser (higher signal to noise ratio and higher
power) and using short lengths of fibers (like photonic crystal fibers).

• In Section 4.2 we report on distributed measurements of chromatic disper-
sion along dispersion shifted fibers with different values of polarization
mode dispersion and coupling lenght, by way of an OTDR-like method
based on four wave mixing.

As mentioned at the beginning because of the long distances and high pow-
ers, optical nonlinearities start to play a significant role in optical fibers.
In dispersion shifted fibers (DSF) four wave mixing whose efficiency de-
pends on the chromatic dispersion profile, leads to transmission impair-
ments. From here arise the necessity to have a technique that can allow to
map the longitudinal distribution of chromatic dispersion along a fiber. The
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method proposed by Mollenauer et al.[29, 30] and based on four wave mix-
ing, is a convenient approach for the measurement of chromatic dispersion
maps in DSF fibers. In this chapter we show that when the coupling length h
is relatively large (as is typically the case for most older installed DSF cables)
the method presents severe limits. In the chapter we present a comparison
between DSF fibers with different values of PMD and coupling length and
a model is discussed in order to explain the observed phenomena. We show
too that mapping of chromatic dispersion in DCF fibers, is strongly affected
by the coupling length value present in them.

• In Section 4.3 we report for the first time on distributed measurements of
nonlinear coefficient n2/Ae f f along dispersion shifted fiber by way of an
OTDR-like method based on four wave mixing effect.

The utility of such a kind of measurements is pretty clear considering what
we have said at the beginning of the chapter. It is therefore important to have
a simple and accurate method for the determination of this ratio. Different
methods, based on SPM or XPM phase shift detection using interferometric
[23] and non-interferometric [5] schemes have been proposed (see Chapter
2). But all these measurements techniques give only the integrated value of
the nonlinear coefficient over the entire length of the fiber under test (FUT).
The only way to obtain a map of the n2/Ae f f over the entire fiber length con-
sist in performing a destructive fiber-cutting measurement. In this chapter,
we propose a new method based on an OTDR-like technique firstly pro-
posed by Mollenauer et al. [29, 31] to perform distributed measurements of
chromatic dispersion along a fiber. The method allows us to obtain longitu-
dinal mapping of the nonlinear coefficient along a 10 km DSF fiber.

4. In Chapter 5 different works the author was involved with during his Ph.D., and
not only related to nonlinear effects in optical fibers, are presented.

• In Section 5.1 we present a a new system combining near-field scanning opti-
cal microscopy (NSOM) with single photon detection operating at the wave-
length of 1.55 µm. The microscope was used in order to image the splice re-
gion between a standard telecom and an Erbium doped fiber. The excellent
sensitivity also allowed to detect the Rayleigh scattered light of a standard
fiber coming out laterally through the fiber cladding.
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• In Section 5.2 we present a new way to obtain distributed gain measure-
ments in Er-doped fibers with high resolution and accuracy using an optical
frequency domain reflectometer.

• In Section 5.3 we make an analysis of the polarization evolution in a ribbon
cable using high-resolution coherent OFDR.

• Finally in Section 5.4 we present a PMD emulator where the DGD and the
ratio between first and second order PMD can be set by the user.

Finally in the appendixes B and C are presented all the articles and proceedings
published during the Ph.D. in which the author was actively involved.
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1.2 Introduction (française)

Ces dernières années, l’implémentation des amplificateurs à fibre dopée à l’erbium a
permis d’étendre les transmissions haut débit aux distances transocéaniques. Malgré
cela, la demande d’augmentation de la capacité des transmissions est sans précédent
et continue de croı̂tre. Il y a différentes façons de combler cette demande, par exem-
ple en augmentant le taux de bits par canaux (time domain multiplexing, TDM) ou
simplement en augmentant le nombre de canaux circulant dans une seule fibre (wave-
length division multiplexing, WDM). Les deux méthodes ont leurs avantages et leurs
inconvénients, mais les effets non linéaires jouent un rôle dans les deux cas.

Quelle est donc l’origine de ces effets non linéaires [1]? Un matériau peut être
vu, de façon simpliste, comme étant constitué d’un ensemble de particules chargées:
des électrons et des ions. Lorsqu’un champ électrique est appliqué sur celui-ci, les
charges se mettent en mouvement. Les charges positives se déplacent dans le sens du
champ et les chargent négatives dans le sens inverse. Dans les matériaux diélectriques
(dans notre cas le verre) les charges ne sont pas libres de se mouvoir, seul un faible
déplacement est permis. Ces petits mouvements de charges (ions dans un sens et
électrons dans l’autre) induisent un moment électrique dipolaire. A cause de la
masse élevée des ions et des hautes fréquences de la lumière (1013 - 1017 Hz), seul
le déplacement des électrons est significatif. Généralement, on considère que l’électron
se trouve dans un potentiel linéaire (approximation de Lorentz). Mais dans le cas de
grands champs électriques (c.-à-d. pour des puissances intenses), des harmoniques
d’ordre supérieures doivent être considérées. La polarisation induite par le champ
électrique ne peut plus être considérée comme linéaire ; pour la silice elle prend la
forme générale suivante :

P = ε0

(
χ(1)E+χ(3)EEE+ · · ·

)
(1.3)

avec ε0 permittivité du vide et χ( j) susceptibilité du j-e ordre. Le terme χ(1) est
la contribution prépondérante de la polarisation P et ses effets se traduisent par
l’indice de réfraction n [2]. Le terme du troisième ordre χ(3) est à l’origine d’effets
comme la génération de troisième harmonique, le mélange à quatre ondes (FWM) et
l’indice non linéaire [2]. Les deux premiers processus (processus générant de nou-
velles fréquences) sont généralement négligeables si la condition d’accord de phase
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n’est pas respectée. L’indice non linéaire est au contraire toujours présent et af-
fecte profondément la propagation de faisceaux lumineux intenses dans les fibres op-
tiques. L’onde électromagnétique passant à travers la fibre induit une polarisation du
troisième ordre qui est proportionnelle au cube du champ électrique (voir Eq. 1.3).
Cela revient à remplacer le terme χ(1) par χ(1) + χ(3)E2. En d’autres termes, l’indice de
réfraction évolue comme l’intensité optique [1].

ñ(ω, I) = n(ω)+n2I (1.4)

Cette dépendance de l’indice de réfraction vis à vis de l’intensité (effet Kerr optique)
est responsable de nombreux effets non linéaires.

Il faut noter que même si le coefficient non linéaire n2 est assez faible, les effets
non- linéaires dans les fibres optiques sont conséquents, car leur intensité dépend de
la longueur de fibre parcourue par l’onde et du rapport n2/Ae f f , où n2 est l’indice de
réfraction non linéaire de la fibre et Ae f f est l’aire effective du mode optique. Malgré
les petites valeurs intrinsèques du coefficient non linéaire de la silice, les effets non-
linéaires dans les fibres optiques peuvent être observés même avec de faibles puis-
sances, car la lumière est confinée dans une surface relativement petite (env. 80 µm2)
sur de longues distances d’interaction (pour des liaisons transocéaniques comme men-
tionnées au début de l’introduction). C’est pourquoi les effets non linéaires ne peuvent
pas être négligés lorsque l’on considère la propagation de la lumière dans les fibres op-
tiques. Le coefficient non linéaire étant une grandeur physique importante pour tous
les effets non linéaires, le chapitre 2 de cette thèse présente une mesure originale de ce
paramètre.

Une autre manifestation de la dépendance de l’indice de réfraction vis à vis de l’in-
tensité apparaı̂t à travers l’automodulation de phase (self-phase modulation, SPM), ce
phénomène se traduit par un élargissement spectral des pulses optiques se propageant
à travers une fibre [2]. La SPM, comme la plupart des effets non linéaires, n’est pas
nécessairement néfaste, on peut aussi en tirer partie comme par exemple en la combi-
nant avec la dispersion de vitesse de groupe (group velocity dispersion, GVD) pour
réaliser des solitons (c.-à-d. des impulsions se propageant sans se déformer).

Quand il y a co-propagation de deux ondes ou plus, elles peuvent interagir entre
elles de façon non linéaire dans la fibre. Cette interaction est à l’origine de nombreux
phénomènes comme la stimulation Raman, la diffusion Brillouin, la génération d’har-
monique et le mélange à quatre ondes.
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L’intermodulation de phase (cross-phase modulation, XPM) est analogue à la SPM;
par contre cette fois-ci la phase induite ne dépend pas seulement de l’intensité de
l’onde considérée mais aussi de celle des autres ondes présentes [2]. L’ampleur de
l’XPM est différente pour le couplage entre deux ondes de fréquences différentes et
de même polarisation et pour le couplage entre deux ondes de même fréquence et de
polarisations différentes. Dans le chapitre 3, les deux cas sont abordés et exploités
dans le cadre de l’étude de la rotation non linéaire de la polarisation (section 3.1) et de
l’élaboration d’un interrupteur tout optique (section 3.2).

Un autre effet non linéaire peut être conséquent dans les fibres optiques, le mélange
à quatre ondes (four wave mixing, FWM). Ce phénomène n’est pas toujours présent,
et il n’apparaı̂t que sous certaines conditions (accord de phase). Cet effet a des
conséquences dévastatrices pour les systèmes WDM avec des canaux espacés de façon
régulière, car les fréquences générées correspondent à des canaux de transmission.
Ceci mène à des dégradations du signal transmis. Le chapitre 4 est dédié à différents
aspects du FWM. On peut l’utiliser pour générer des paires de photons dans des fibres
monomodes (section 4.1), pour obtenir une mesure distribuée de la dispersion chro-
matique de fibres monomodes (section 4.2) et pour obtenir un profil longitudinal du
coefficient non linéaire dans les fibres (section 4.3).

Le chapitre 5 décrit d’autres travaux que l’auteur a entrepris, mais qui n’ont pas de
relation avec les effets non linéaires dans les fibres optiques. La section 5.1 aborde un
nouveau montage qui accroı̂t très fortement la sensibilité d’un microscope à champs
proche. La possibilité d’observer le gain d’un EDFA à l’aide d’un OFDR est vu dans la
section 5.2. Dans la section 5.3 on s’intéresse à l’évolution de la polarisation dans une
fibre à ruban. Pour finir, un nouveau type d’émulateur de dispersion des modes de
polarisation est présenté dans la section 5.4.

Dans la suite de cette introduction, des résumés plus détaillés des différentes parties
sont développés.

1. Dans le chapitre 2, on montre une nouvelle méthode de mesure du coefficient
non linéaire n2/Ae f f dans les fibres télécoms à 1550 nm.

Comme nous l’avons déjà mentionné dans le début de cette introduction,
l’implémentation des amplificateurs à fibre dopée à l’erbium permet des trans-
missions haut débit sur des distances transocéaniques. Dans le même temps,
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la technique du multiplexage en longueur d’onde (WDM) est utilisée pour ac-
croı̂tre les capacités des transmissions, ce qui mène à une forte augmentation de
la puissance circulant dans les fibres. A cause de ces longues distances et de
ces fortes intensités, les non linéarités optiques causées par les changements de
l’indice de réfraction (effet Kerr optique) commence à jouer un rôle conséquent.
Ce sont l’automodulation de phase (SPM), l’intermodulation de phase (XPM) et
le mélange à quatre ondes (FWM) qui sont prépondérants. L’importance de ces
effets dépend du rapport n2/Ae f f , où n2 est l’indice de réfraction non linéaire
de la fibre et Ae f f l’aire effective du mode optique. Il est donc important d’avoir
une méthode simple et précise pour la détermination de ce rapport. Différentes
méthodes basées sur la détection de la différence de phase induite par la SPM
ou la XPM utilisant des schémas interférométriques ou non ont été proposés
[3]. Dans ce chapitre, nous proposons une méthode différente basée sur une
détection interférométrique de la différence de phase utilisant un interféromètre
auto-aligné grâce à des miroirs de Faraday. Cette méthode a l’avantage d’être
de réalisation simple et entièrement fibrée. De plus, les fluctuations extérieures
présentes dans les autres schémas mentionnés ci-dessus sont éliminées. Un autre
point important porte sur la comparaison des résultats de n2/Ae f f (section 2.2)
obtenus à l’aide de notre méthode avec ceux d’autres instituts pour les même
fibres : des fibres à dispersion décalée (dispersion-shifted fiber, DSF), des fibres
à dispersion compensée (dispersion-compensating fiber, DCF) et des fibres stan-
dards monomodes (single-mode fiber, SMF). On montre que les valeurs trouvées
sont en accord avec celles obtenues avec différentes méthodes par les autres in-
stituts. En particulier, dans la section 2.3 nous comparons nos résultats avec la
méthode SPM based cw dual-frequency [4, 5]. Cette méthode, avec son principe
de mesure très simple, donne des valeurs précises de n2/Ae f f , sous réserve que
les conditions développées dans la référence [4] soient respectées. Une brève de-
scription de cette méthode est donnée et on présente les résultats d’une mesure
du coefficient non linéaire effectuée sur une fibre à dispersion décalée (DSF). Les
deux méthodes donnent des valeurs qui sont concordantes.

Nous montrons aussi (section 2.2) que nos résultats sont indépendants de la
longueur de la fibre sous test, même en présence d’une grande dispersion chro-
matique qui cause de nombreux problèmes pour les autres méthodes de mesure
[5].
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2. Dans le chapitre 3 on analyse l’influence de la XPM et de la SPM sur la propaga-
tion du signal.

• Dans la section 3.1, on aborde une analyse théorique et expérimentale de la
rotation non linéaire de polarisation (nonlinear polarization rotation, NPR)
dans les fibres optiques.

Les possibilités de réaliser des dispositifs ultra-rapides à l’aide de la rotation
non linéaire de polarisation est connue depuis longtemps et reçoit donc une
attention toute particulière. Des propositions ont été faites pour réaliser des
interrupteurs optiques [6], des portes logiques [7], des multiplexeurs [8], des
discriminateurs d’intensité [9], des filtres non linéaires [10] ou des remises
en forme d’impulsion [11]. Cependant, la stabilité de l’état de polarisation
de sortie est un problème inhérent à toutes ces applications. Généralement,
on observe des variations de la biréfringence linéaire causées par les change-
ments de températures et les perturbations de l’environnement de la fibre,
ce qui limite la stabilité souhaitée. Bien sûr, ce problème est aussi ren-
contré dans les expériences traitant de la caractérisation et de la mesure de
la NPR elle-même. Dans la référence [12], les fluctuations de la polarisa-
tion de sortie étaient trop importantes pour permettre une mesure sensée
de la NPR dans une fibre à maintien de polarisation à 1064 nm, et dans
la référence [13], où de la lumière à 514 nm a été injectée dans une fibre
de 60 m avec une longueur de battement de 1.6 cm, un arrangement com-
pliqué a du être mis en place pour extraire le signal du bruit dû aux dérives
de température. Comme les fluctuations empirent dans les fibres avec les
biréfringences élevées et que l’effet de la NPR est inversement proportion-
nel à la longueur d’onde, il est difficile d’effectuer une mesure directe de
la NPR dans une fibre à maintien de polarisation et aux longueurs d’onde
télécoms (1.55 µm). Dans ce chapitre (section 3.1), on propose une méthode
pour éliminer totalement la biréfringence linéaire, et donc ses fluctuations,
de façon passive. On utilise un miroir de Faraday [14] (faraday mirror, FM)
et un double passage dans la fibre sous test. Pour vérifier comment cette
méthode, maintenant courante [15, 16, 17, 18] pour éliminer les effets de la
biréfringence linéaire, agit sur la NPR, on présente aussi dans ce chapitre
un model simple pour calculer l’effet d’une biréfringence linéaire ou non
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linéaire. En utilisant ce model, on montre facilement que la méthode pro-
posée élimine totalement la biréfringence linéaire, alors que la biréfringence
non linéaire, menant à la NPR, reste inchangée. Après une description du
montage, les résultats obtenus avec notre méthode de mesure de la NPR
utilisant un FM sont présentés ainsi que les prédictions de notre modèle an-
alytique. L’excellent accord entre les deux démontre que l’utilisation du FM
élimine complètement les effets de la biréfringence linéaire, ce qui permet
d’observer la NPR, qui autrement aurait été noyée dans le bruit de fond du
changement de la polarisation dû aux fluctuations extérieures. Ce résultat
valide aussi notre méthode pour la réalisation d’autres applications comme
celles précitées, avec la perspective d’augmenter considérablement leur sta-
bilité en polarisation.

• Dans la section 3.2 on montre un interrupteur entièrement optique à 1.55 µm
basé sur la rotation non linéaire de polarisation, dans une fibre à maintien
de polarisation et dans une fibre standard télécoms.

Les techniques d’interrupteur tout-optique basées sur l’effet Kerr optique
[8, 19, 20, 21, 22, 23] sont très intéressantes à cause de la réponse ultra-
rapide de l’effet Kerr [24, 25, 26] , de l’ordre de quelques femtosecondes.
En fait, un interrupteur tout optique à effet Kerr a été utilisé récemment
pour extraire un canal à 10Gb/s d’un signal TDM à 40Gb/s [6]. En plus des
paramètres courants pour caractériser les interrupteurs comme le taux d’ex-
tinction, les pertes d’insertion ou le temps de transition, la stabilité de l’in-
terrupteur est un enjeu important. Les variations des polarisations d’entrée
du signal et du contrôle vont affecter l’interrupteur tout comme les change-
ments de la biréfringence intrinsèque du milieu. Les variations de la polari-
sation d’entrée du signal peuvent être gérées grâce à un dispositif insensible
à la polarisation, comme dans la référence [6]. Pour garder l’interrupteur
stable, la polarisation de l’impulsion de contrôle doit être maintenue aussi
stable que possible en utilisant un montage adéquat. De plus, les change-
ments de la polarisation du signal dans le milieu -typiquement une fibre
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à maintien de polarisation (PM)- dus aux variations de la biréfringence in-
trinsèque doivent être éliminés pour ne pas réduire fortement le taux d’ex-
tinction de l’interrupteur. Une correction active (un contrôleur de polarisa-
tion [12] avec une boucle de contre-réaction) n’est pas assez rapide pour cor-
riger les perturbations rapides et ne fonctionne pas du tout pour de grandes
variations à cause de son domaine d’opération limité. Pour résoudre tous
ces problèmes, on utilise d’une part un montage non-interférométrique et
d’autre part une stabilisation passive. Les interrupteurs interférométriques,
comme les boucles de Sagnac ou l’interféromètre de Mach-Zehnder, sont
basés sur une différence de phase induite respectivement entre les deux sens
de propagation ou les deux bras. Si le signal n’est pas lancé correctement
dans un des axes de la fibre PM, il se divise en quatre modes de polarisa-
tion différents, respectivement deux dans chaque sens de propagation ou
dans chaque bras. En plus de la différence de phase entre les deux sens
de propagation ou bras de l’interféromètre, une différence de phase ’locale’
supplémentaire entre les modes de polarisation avec le même sens de prop-
agation (ou passant par le même bras) va dégrader la qualité de l’interrup-
teur. L’interrupteur présenté ici résout ce problème simplement en n’util-
isant que cette différence de marche ” locale ” entre les deux modes de po-
larisation du signal dans la fibre ; ainsi on réduit le nombre de modes à deux.
Ayant simplement deux modes, on peut alors utiliser une stabilisation pas-
sive qui fonctionne pour d’importants changements de la biréfringence de
la fibre, et ce quelle que soit leur vitesse. Bien que dans ce travail une fi-
bre optique soit utilisée pour induire la différence de phase non linéaire, on
peut noter que le principe de la stabilisation marche aussi bien pour tous les
autres milieux Kerr (par exemple les semi- conducteurs absorbant saturables
SOA).

• Dans la partie 3.3, un moyen d’obtenir la longueur de couplage de la polar-
isation est présenté ; c’est un paramètre important pour la distribution de
probabilité de la PMD.

Il est bien connu que les fibres monomodes utilisées dans les communi-
cations ont de la biréfringence et que l’orientation et l’amplitude de la
biréfringence sont distribuées de façon aléatoire le long des fibres. La dis-
persion des modes de polarisation (PMD) correspondante devient alors une
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quantité statistique, et sa valeur moyenne ainsi que sa distribution de prob-
abilité sont importantes pour évaluer les dégradations causées au système.
Cette distribution dépend de deux paramètres : la biréfringence locale
moyenne B et la longueur de couplage de polarisation h, qui est la distance
au bout de laquelle le champ E a perdu la mémoire de sa distribution ini-
tiale entre les états propres locaux de la polarisation [27]. Pour les fibres qui
ont une distance L grande comparée à h, la distribution de probabilité est
maxwellienne avec une PMD moyenne de B, alors que pour une longueur
de couplage voisine de la longueur de la fibre la distribution statistique de
la PMD peut changer considérablement [28]. Il est donc important d’avoir
connaissance non seulement de la PMD mais aussi de h et de la longueur
de battement Lb.. Ici, nous décrivons une nouvelle façon de déterminer la
longueur de couplage à partir de mesures de la rotation non linéaire de po-
larisation (NPR) dans une fibre.

3. Dans le chapitre 4, on s’intéresse au FWM dans les fibres optiques.

• Dans la partie 4.1, on présente une nouvelle façon de générer des paires de
photons.

Il est bien connu que les paires de photons enchevêtrés en énergie et temps
peuvent être utilisées comme source dans les processus d’information quan-
tique. Jusqu’à maintenant, les paires de photons ont été principalement
créées dans des cristaux non linéaires ou des guides d’onde, en utilisant
la conversion paramétrique qui est un effet non linéaire dû à la suscepti-
bilité du deuxième ordre χ(2). Dans ce chapitre, nous proposons de créer
des paires de photon directement dans les fibres optiques en exploitant un
processus de mélange à quatre ondes dû à la susceptibilité du troisième or-
dre χ(3). Comme nous l’avons mentionné au début de cette introduction, ce
terme est responsable du FWM, de la génération de troisième harmonique
et de l’indice non linéaire. La dépendance de la polarisabilité avec le champ
E se traduit par une dépendance de l’indice de réfraction avec la puis-
sance, ce qui permet d’introduire une intermodulation entre les différents
signaux optiques. Alors, si deux différents signaux avec des fréquences ν1,
ν2 sont lancés dans la fibre, le battement de ces deux signaux module l’indice
de réfraction avec la fréquence (ν2 -ν1). A cause de cette modulation, un
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troisième signal à la fréquence ν1 va développer des bandes latérales aux
fréquences

ν1 +(ν1−ν2) ν1− (ν1−ν2)

La situation est en fait plus complexe, car toutes les fréquences peuvent
se combiner les unes avec les autres. Une représentation quantique de la
chose serait que différents photons s’annihilent pour donner naissance à
de nouveaux photons à d’autres longueurs d’onde. Différents types de
FWM sont possibles. Le cas où trois photons de même fréquence s’an-
nihilent pour donner naissance à un nouveau photon s’appelle le FWM
“totalement dégénéré”; si deux photons de même énergie se combinent
pour donner deux photons d’énergie différente on parle de FWM “partielle-
ment dégénéré”. Le FWM “non-dégénéré” correspond au cas où toutes les
longueurs d’onde seraient différentes. Il est important de remarquer que
non seulement la conservation d’énergie doit être respectée mais aussi les
conditions d’accord de phase. C’est pour cette raison que le FWM fait partie
des “processus paramétriques”.

Dans ce chapitre, on se concentre essentiellement sur le FWM “partielle-
ment dégénéré”. Dans le processus, deux photons de la pompe sont ab-
sorbés par la fibre et deux photons sont créés; le premier à une fréquence
supérieure à celle de la pompe et le second à une fréquence inférieure.
Couramment l’onde à basse fréquence est appelée raie Stokes et la haute
fréquence raie Anti-Stokes. Comme on l’a évoqué précédemment, les pro-
cessus paramétriques sont plus importants lorsque l’on respecte les condi-
tions d’accord de phase, c’est à dire quand il y a conservation du moment.
Il s’ensuit qu’à cause de la dispersion de l’indice de réfraction, le FWM n’est
pas toujours présent. Dans une fibre mono-mode, l’accord de phase est tou-
jours respecté lorsque l’on travaille près de λ0. Si l’on considère maintenant
une pompe à la longueur d’onde λ0,, le FWM crée de nouveaux photons
à des fréquences distribuées de façon symétrique de part et d’autre de la
longueur de pompe. Ces photons sont générés en même temps et donc sont
corrélés en temps.

L’avantage qu’il y a à créer des paires de photons dans les fibres optiques
réside dans l’élimination des pertes que l’on peut avoir lorsque l’on crée
les paires dans une source externe et qu’on les couple dans une fibre. Cela
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permet aussi d’opérer de façon complètement fibrée, ce qui est bien plus
pratique dans les applications courantes (par exemple la métrologie). Mal-
heureusement dans notre expérience, aucune paire de photons n’a pu être
détectée. Cela peut être dû à la trop faible puissance injectée dans la fi-
bre sous test et à la mauvaise qualité du laser DFB. Dans le même temps,
la luminescence provenant des impuretés du verre couvre le signal. Des
améliorations peuvent être apportées avec un laser erbium en anneau (un
meilleur rapport signal sur bruit et une plus grande puissance) et en util-
isant de courts morceaux de fibres (comme des fibres à cristal photonique).

• Dans la section 4.2, on aborde une mesure distribuée de la dispersion chro-
matique le long de fibres à dispersion décalée avec différentes valeurs de
dispersion de mode de polarisation et de longueur de couplage, en utilisant
une méthode similaire à un OTDR, basée sur le mélange à quatre ondes.

Comme mentionné précédemment, les non linéarités optiques commencent
à jouer un rôle significatif dans les fibres optiques à cause des distances par-
courues et des fortes puissances. Dans les fibres à dispersion décalée (DSF),
le mélange à quatre ondes, dont l’efficacité dépend du profil de la disper-
sion chromatique, mène à des erreurs de transmission. C’est pourquoi il est
nécessaire d’avoir une technique qui permet d’obtenir la distribution longi-
tudinale de la dispersion chromatique le long de la fibre. La méthode pro-
posée par Mollenauer et al.[29, 30] et basée sur le mélange à quatre ondes
est une bonne approche pour la mesure distribuée de la dispersion chro-
matique dans les fibres à dispersion décalée. Dans ce chapitre, on mon-
tre que lorsque la longueur de couplage h est relativement grande (comme
c’est généralement le cas pour la plupart des vieux câbles DSF installés) la
méthode présente de sévères limites. Dans le chapitre, on montre une com-
paraison entre plusieurs fibres DSF avec différentes valeurs de PMD et de
longueur de couplage, et un model est élaboré pour tenter d’expliquer les
phénomènes observés. On montre aussi que la distribution longitudinale de
la dispersion chromatique dans les fibres DCF est fortement affectée par leur
longueur de couplage.

• Dans la section 4.3, on montre pour la première fois une mesure distribuée
du coefficient non linéaire n2/Ae f f le long de fibres à dispersion décalée en
utilisant une méthode similaire à un OTDR, basée sur le mélange à quatre
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ondes.

L’utilité d’une telle mesure est assez évidente au vu de tout ce que l’on a dit
au début de ce chapitre. C’est pourquoi il est important d’avoir une méthode
simple et précise de mesure pour la détermination de ce rapport. Différentes
méthodes basées sur la détection de la différence de phase induit par la SPM
ou la XPM, utilisant des schémas interférométriques [23] ou non [5], ont été
proposées (voir chapitre 2). Mais toutes ces techniques ne donnent que la
valeur du coefficient non linéaire intégrée sur toute la longueur de la fibre
sous test (FUT). Le seul moyen d’obtenir un profil de n2/Ae f f le long de la
fibre est destructif, il faut couper la fibre en petits bouts. Dans ce chapitre, on
propose une nouvelle méthode similaire à une technique élaborée par Mol-
lenauer et al. [29, 31] pour réaliser une mesure distribuée de la dispersion
chromatique le long de la fibre. La méthode nous permet d’obtenir un profil
longitudinal du coefficient non linéaire le long d’une fibre DSF de 10 km.

4. Dans le chapitre 5, différents travaux réalisés par l’auteur au cours de sa thèse et
n’ayant pas de rapport avec les effets non linéaires dans les fibres sont présentés.

• Dans la section 5.1 on présente une nouvelle méthode combinant micro-
scopie de champ proche à balayage (NSOM) avec détection de photon
unique travaillant à la longueur d’onde de 1.55 µm. Le microscope a été
utilisé pour réaliser l’image de la soudure entre une fibre standard et une fi-
bre dopée à l’erbium. L’excellente sensibilité permet de détecter la diffusion
Rayleigh de la fibre standard sortant latéralement à travers la gaine.

• Dans la section 5.2 on présente une nouvelle façon d’obtenir une mesure dis-
tribuée du gain dans les fibres dopées à l’erbium avec une haute résolution
grâce à un OFDR (optical frequency domain reflectometer).

• Dans la section 5.3 on fait l’analyse de l’évolution de la polarisation dans un
ruban de fibre en utilisant un OFDR.

• Finalement, dans la section 5.4 on présente un émulateur de PMD où le DGD
et le rapport entre PMD du premier et du deuxième ordre peut être choisi
par l’utilisateur.

A la fin, les appendices B et C présentent tous les articles et proceedings publiés
pendant la thèse dans les quel l’auteur s’est activement investi.





Chapter 2

Determination of the Nonlinear
Coefficient in Optical Fibers.

2.1 Measurements of n2/Ae f f in SMF fibers

In this section we demonstrate a method for the measurement of the nonlinear coeffi-
cient n2/Ae f f in telecom fibers at 1550 nm. This method is based on the Kerr phase
shift detected by a self-aligned interferometer incorporating a Faraday mirror. This
makes the set-up very robust, and different test fibers can be measured without any
further readjustments.

2.1.1 Introduction

The implementation of Erbium-doped fiber amplifiers allows for high-bit rate trans-
mission over transoceanic distances. At the same time, the technique of wavelength
division multiplexing (WDM) is used to increase the transmission rate, leading to an
important amount of power inside the fiber. Because of the long distances and high
powers, optical nonlinearities due to changes in the refractive index (optical Kerr ef-
fect) start to play a significant role. Among them, self-phase modulation (SPM), cross-
phase modulation (XPM), and four-wave mixing (FWM) are the most important. The
magnitudes of these effects depend on the ratio n2/Ae f f , where n2 is the nonlinear
refractive index of the fiber and Ae f f the effective area of the lightmode. It is therefore
important to have a simple and accurate method for the determination of this ratio.
Different methods, based on SPM or XPM phase shift detection using interferometric
and non-interferometric schemes have been proposed [3]. In this chapter, we present

25
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a different method based on the interferometric detection of a phase shift using a self-
aligned interferometer with a Faraday mirror. This method has the advantage to be
simple and to be all fiber implementable. Moreover, fluctuations from environmental
perturbations present in the other schemes mentioned above are avoided.

2.1.2 Principle of operation

The power dependence of the refractive index leads to a power dependent phase
change φ of a pulse (peak power P, wave number k) traveling through a fiber of length
L:

φ(P) = φl +φnl = n0kL+n2kLe f f
P

Ae f f
m (2.1)

Fiber losses are accounted for by the effective length Le f f = 1/α [1-exp(-α L)], with
fiber loss coefficient α. The polarization parameter m depends on the polarization
characteristics of the test fiber and the signal polarization state. It is equal to 1 for the
case of a polarization maintaining fiber if the light is coupled into one of the two axes
[32], whereas for a sufficiently long standard telecom fiber with a complete scrambling
of the polarization, it was demonstrated that m=8/9 [33]. Using Eq. (2.1), a measure
of the acquired phase shift will allow to determine the ratio n2/Ae f f or, through an
independent measurement of Ae f f, the value of n2. The phase shift is measured using
the self-aligned interferometer shown in Fig. 2.1. Amplified laser pulses are split at the
first coupler (coupling ratio (α/(1-α)). They then move along the two interferometer
arms, which are different in length so that the two pulses do not interfere upon recom-
bination at the second coupler (coupling ratio β/(1-β)). One of the exit arms of this last
coupler is connected to the fiber under test (FUT) of which n2/Ae f f is to be measured.
For an adequate choice of α and β, the two pulses in the FUT strongly vary in power,
and consequently experience (according to Eq. (2.1)) a different amount of phase-shift.
After being reflected at the Faraday mirror (FM) [14, 16], the pulses return back through
the FUT towards the first coupler. Four different trajectories through the interferome-
ter are possible during the go- and return path: a double pass of the long-arm (long-
long), of the short-arm (short-short), and a forward pass of the short (long) arm with
a return pass through the opposite arm (short-long and long-short, respectively). Due
to the differences in path length, three different arrival times at the detector can be
discerned, as is schematically shown in the inset of Fig. 2.1. Only the middle pulse,
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that is due to the interference between short-long and long-short pulses, is interesting
and will be further analyzed. Its power at the detector depends on the phase relation-
ship between the two interfering signals, and it can therefore be exploited to calculate
the nonlinear phase-shift experienced in the FUT. Note that contrary to regular Mach-
Zehnder interferometers, the balancing of the interferometer arms is not critical as the
path lengths of the two interfering signals are automatically matched (self-aligned).
Obviously, the power of this middle pulse also depends on the polarization states of
the two interfering signals, given by

|ψLS >= R−1
S (R−1

FUTFRFUT)RL|ψ0 >= R−1
S FRL|ψ0 >=: A|ψ0 > (2.2)

|ψSL >= R−1
L (R−1

FUTFRFUT)RS|ψ0 >= R−1
L FRS|ψ0 >=: B|ψ0 > (2.3)

for the long-short and short-long path, respectively. ψ0 is the input state of polariza-
tion, and RL, RS, RFUT , and F are the transformation operators for the long- and short
arm, the FUT, and the FM, respectively. The use of a FM as a reflector removes polar-
ization transformations of the FUT, thereby fixing its output polarization. Note that
using a standard mirror in place of the FM, an additional PC would be required, which
not only makes the initial adjustments painful, but also leads to an undesired FUT de-
pendence. For optimum visibility, one needs full interference between the two signals,
i.e. A=B in Eq. (2.2) and Eq. (2.3), which can be obtained by properly adjusting the
PC such that RL = RS. In practice, this is done by setting the PC so that the output in-
tensity is maximized for a low input pulse power and with the FM directly connected
to the interferometer (i.e. no FUT and therefore no nonlinear phase-shift is present).
This setting can then be used throughout the measurements, without the need for re-
adjustments as long as there is no significant change in RL or RS. Using the described
adjustment, the detected power becomes proportional to

POUT(P) ∝ Pcos2(∆φ) (2.4)

where ∆φ is the difference between the nonlinear phase shifts acquired by the short-
arm and long-arm pulses, and it is equal to

∆φ(P) =
2π
λ

PLe f f(α−β)m
n2

Ae f f
(2.5)
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Figure 2.1: Experimental setup of the self-aligned interferometer. DFB distributed feedback laser,
EDFA Erbium doped fiber amplifier, PC polarization controller, FUT fiber under test, FM Faraday mir-
ror, D detector.
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Straightforward calculation shows that for maximum visibility of the detected sig-
nal, one of the two couplers has to be symmetric (50/50). In order to obtain a good
accuracy for n2/Ae f f , the measurements are done for different launch powers P. Ide-
ally, the length of the FUT is long enough to allow for a good polarization scrambling
and to be able to detect the first zero pass at ∆φ = π/2 for the available launch power.

2.1.3 Experimental

The procedure needed to perform the measurements is the following. First of all a
calibration of the photodiode and a measurement of the real power sent into the fiber
has to be made. In order to do this we have to measure the power from the DFB laser.
We do this by using a power meter and measuring the average power for different
pulse widths and frequencies in order to check if the power meter is responding lin-
early with these two parameters. Once linearity is established we calculate the peak
power of the laser. If we know now the value of the peak power we can calibrate the
photodiode we are using in our setup. To do this we the output of the DFB laser di-
rectly onto the photodiode by passing first through a variable attenuator. For different
attenuation values we measure the voltage detected at the photodiode and knowing
the input power value (determined before) we can find the conversion function from
Watts to Volts. When we have the calibration function of the photodiode we can use
it to determine the peak power at the entry of our interferometer. Of course higher
attenuation during the experiment have to be used due to the high values of the peak
power reached after the EDFA. The measurements on the fibers are made in the follow-
ing way. For different values of amplification (i.e. current set on the EDFA) we measure
the peak power value at the exit of the interferometer. But of course we have to take
into account that the effective area of the fiber that makes up the interferometer could
be different from the one of the FUT. That implies that an amount of power different
from the measured one at the entry of the interferometer, is coupled into the FUT. So
we have always to check the coupling loss between the different components of the in-
terferometer (i.e. Faraday mirror and exit of the interferometer) and the FUT. Another
parameter we have to measure is the attenuation loss of the FUT. This is measured by
means of an OTDR. Taking into account all this parameter we obtain an effective length
different from the real one. This is the value that has to enter the fitting function of our
data. Once we have collected different experimental data changing the power at the
entry of the fiber (current) we have to find out to which power these different points
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correspond to. To do this we can measure it at the second exit of the last coupler of the
interferometer (if we have two photodiodes) or just by removing the FUT and measur-
ing there the input power sent into the FUT. These procedures have to be repeated at
least three times in order to accumulate enough statistics. For each measurement the
calibration procedure has to be repeated in order to increase the accuracy. In fact the
power seems not to be stable with respect to of time for the same current value at the
exit of the EDFA.

2.1.4 Results and discussion

For the practical implementation of the above concept, we use a directly modulated
DFB laser diode with a wavelength of 1559 nm and consecutive amplification by an
EDFA. The pulse duration is 28 ns with a repetition rate of 1 kHz. Note that in some
fibers, such pulses can excite acoustic waves through electrostriction, leading to erro-
neous n2/Ae f f values - a laser source with shorter pulses should be used to avoid this
risk. For the couplers, a 50/50 ratio is used for the first one and a 90/10 for the sec-
ond. Fig. 2.2 displays the interference signal as a function of the launch power P for a
standard telecom fiber (SMF) with a length of 1100 m used as FUT. The experimentally
obtained values (squares) are fitted using Eq. (2.4) (solid line). The data corresponds
well with the model (statistical χ2= 3·10−3). As can be seen, the signal slowly increases
reaching a maximum value at 1.4 Watts. For higher powers the nonlinear phase shift
becomes more important and the signal decreases reaching a null value at 3.4 Watts
corresponding to a full π/2 phase shift. From the fit we obtain a value of (2.76 ± 0.04)
10−10 W−1 for the nonlinear coefficient n2/Ae f f . Having found with the refracted-
near-field method [34] a value of (88 ± 3) µm2 for Ae f f, the nonlinear refractive index
n2 becomes (2.4 ± 0.1) 10−20 m2/W.

2.1.5 Conclusion

In this section we have demonstrated a simple method for the measurement of the
nonlinear coefficient n2/Ae f f based on an all fiber, self-aligned interferometer. The
self-alignment characteristic not only allows for an easy and quick initial adjustment
of the interferometer, but along with the use of a Faraday mirror also makes it robust
against environmental perturbations. Moreover the double-pass configuration allows
to characterize shorter span of FUT compared to single-pass implementation. This
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Figure 2.2: Detected interference signal power as a function of launch power. Measured data (squares),
theoretical fit (solid line).

leads to a good accuracy for the measured n2/Ae f f values. The proposed method is
well suited to routinely measure the nonlinear coefficient, as due to the FM the fiber
under test can be easily exchanged without necessitating any further readjustments of
the interferometer.
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2.2 Measurements of n2/Ae f f in SMF, DSF, and DCF

fibers

In this section we present measurements of the nonlinear coefficient n2/Ae f f for stan-
dard SMF, DSF, and DCF fibers, using a method based on the detection of the Kerr
phase shift by a self-aligned interferometer (see previous section). The presence of a
Faraday mirror in the interferometer makes the set-up very robust, and different test
fibers can be measured without any further readjustments. Interlaboratory compar-
isons show that the values found with our method are in good agreement with the
other ones. Moreover an analysis of a SMF fiber with large chromatic dispersion shows
a good reproducibility of the n2/Ae f f measurements as a function of fiber length.

2.2.1 Introduction

As mentioned before in section 2.1.1 there are different methods to measure n2/Ae f f ,
based on SPM or XPM induced phase shift detection [2] using interferometric and non-
interferometric schemes. The interferometric detection scheme [32] presents the advan-
tage that it can be implemented more easily. But a disadvantage is its susceptibility to
environmental perturbations that leads to a poor stability. In our setup we obtained a
considerable improvement of this technique by using a self-aligned interferometer [35]
with a Faraday mirror. This method has the advantage to be simple and all fiber im-
plementable. The fluctuations due to the environmental perturbations are completely
removed [23]. In this chapter we compare the values of n2/Ae f f obtained with our
method, for Dispersion Shifted Fibers (DSF), Dispersion Compensating Fibers (DCF),
and a standard Single Mode Fiber (SMF) with the ones obtained by other institutions
on the same fibers. Our values are found to agree quite well with the results from the
different measurement methods employed by the other institutions.

2.2.2 Principle of operation

The experimental setup and the principle of operation is described in Section 2.1.2. A
sligthly modified version of the setup is shown in Fig. 2.3
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Figure 2.3: Experimental setup of the self-aligned interferometer. DFB distributed feedback laser,
EDFA Erbium doped fiber amplifier, PC polarization controller, FUT fiber under test, FM Faraday mir-
ror, D detector.).

2.2.3 Results

n2/Ae f f was measured for five different fibers comprising SMF, DSF, and DCF of
different lengths. The fibers’ parameters are listed in Tab. 2.1 and Tab. 2.2. Fibers
DSF-1 and DSF-2 were also measured at NTT [36] utilizing the self-phase modulation
based cw dual-frequency method [5, 4]. Fibers NIST-B and NIST-C were measured
by six different institutions using the CWDF method and the pulsed method using
different fiber lengths and laser wavelengths. Results regarding this North-American
round robin were published in [37]. A typical result for a single measurement with
our method is shown in Fig. 2.4. The FUT was Fiber G-1 with a fiber length of 2231
m. The interference signal power detected at the exit of the interferometer is plotted
as a function of the launch input power P. The experimental values (open circles) are
increasing almost linearly in the beginning, demonstrating that nonlinear effects are
of little importance up to launched powers of about 0.5 Watt. Then they set in quite
heavily, and the measured power eventually starts to decrease with increasing launch
power. The maximum of the interference signal power is reached at a launch power of
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Figure 2.4: Detected interference signal power as a function of launch power: (open circles) measured
data, (solid line) theoretical fit (Eq. (2.4)).

0.8 W, whereas a null value, corresponding to a full π/2 nonlinear phase shift, is ob-
tained for 1.9 W. From this value, n2/Ae f f can be calculated using Eq. (2.5). However,
we always fitted all the points as the precision is much better. For each fiber three
to four different measurements were taken on different days in order to test the re-
producibility of our method. The corresponding results are summarized in Table 2.1.
Note that the maximum absolute deviation from the average (MD) is used to charac-
terize the reproducibility. Generally the reproducibility is quite good (<10%) although
it varies somewhat from fiber to fiber (see Table 2.1 and Table 2.2). Table 2.2 reports the
values found by the other laboratories. For the NIST fibers [37], the standard deviation
among the n2/Ae f f values of the six different round robin participants is given. As
one can see the agreement with our values is quite good (with a deviation < 15% in the
worst case). For the NTT fibers [36], the standard deviation of different measurements
(using the same measurement method) is given. Once more the agreement with our
values is good (<5%). For all measurements of both the NIST and NTT comparison,
the deviation of our values are within the error bars. When looking at the maximum
deviation of our measurements it is striking that for the NIST-C fiber the value is much
larger. A reason for this might be that the GVD in this DCF fiber is much higher. In fact
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Figure 2.5: Nonlinear coefficient measured for different lengths of the same fiber (G-1).

some methods [5] were found to be very sensitive to the fiber’s length for large values
of the chromatic dispersion. Therefore, it is interesting to analyze the reproducibility
of our method in a large GVD fiber as a function of the fiber length. Consequently we
made cut-back measurements of n2/Ae f f for a SMF (G-1) changing the length from
12 km to 2 km. For each length at least 3 measurements were taken. The results are
reported in Fig. 2.5. The overall standard deviation is only 6%, i.e. a similar amount
as the maximum fluctuations for a fixed length (see Table 2.1). Also, no trend of the
n2/Ae f f values as a function of fiber length can be found, demonstrating that our
method is insensitive to the fiber length (in a range of around 10 km) even for large
values of chromatic dispersion.
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Fiber Length λ0 Ae f f (µm2 n2/Ae f f (VALUE) n2/Ae f f (MD)
(m) (nm) 10−10W−1 10−10W−1

G-1 (SMF) 11840 1302 - 3.6 5%
DSF-1 (DSF) 1990 1556.4 44.5 6.4 2%
DSF-2 (DSF) 1990 1548.6 41.1 6.3 5%

NIST-B (DSF) 1563 - 52.2 4.3 2%
NIST-C (DCF) 1010 - 20.2 15.6 11%

Table 2.1: Values of n2/Ae f f for different fibers as measured with the selfaligned interferometric
method.

Fiber Length λ0 Ae f f (µm2 n2/Ae f f (VALUE) n2/Ae f f (MD)
(m) (nm) 10−10W−1 10−10W−1

DSF-1 (DSF) 1990 1556.4 44.5 6.3 5%
DSF-2 (DSF) 1990 1548.6 41.1 6.6 5%

NIST-B (DSF) 1563 - 52.2 4.3 14%
NIST-C (DCF) 1010 - 20.2 13.4 15%

Table 2.2: Values of n2/Ae f f for different fibers as measured by other institutions.

2.2.4 Conclusion

In this section we have presented a simple and stable method for the measurement
of the nonlinear coefficient n2/Ae f f based on an all fiber, self-aligned interferome-
ter. Due to its robustness against environmental perturbations, and its ease of adjust-
ment, the proposed method is well suited to routinely measure the nonlinear coeffi-
cient. The presence of the FM allows to easily exchange the FUT without necessitating
any further readjustments of the interferometer. An inter-laboratory comparison of the
n2/Ae f f measurements on the same test fibers showed good agreement of our results
with the others. Moreover, our method seems to be independent of the fiber’s length
on a range of 10 km even in the presence of large GVD, known to cause problems with
some of the other measurement methods.
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2.3 Interlaboratory measurements of n2/Ae f f of standard

SMF and DSF fibers

In this section we present interlaboratory measurements of the nonlinear coefficient
n2/Ae f f for standard SMF and DSF fibers. Two different measurement methods were
used by two different groups. One of the method is based on the detection of the Kerr
phase shift by a self-aligned interferometer (see previous sections). The other method
is an SPM based cw dual-frequency method. Interlaboratory comparison shows that
the values found with the two methods are in good agreement.

2.3.1 Introduction

There are different methods to measure n2/Ae f f , based on SPM or XPM induced phase
shift detection using interferometric and non-interferometric schemes [2]. The interfer-
ometric detection scheme [32] presents the advantage that it can be implemented more
easily. But a disadvantage is constituted by its susceptibility to the environmental per-
turbations that leads to a poor stability. With one of the setups presented here we
reached a considerable improvement of this technique by using a self-aligned interfer-
ometer [35] with a Faraday mirror. This method [23] has the advantage to be simple
and all fiber implementable and the fluctuations due to the environmental perturba-
tions are completely removed. On the other hand, non-interferometric schemes have
the disadvantage that their measurement accuracy strongly depends on the measure-
ment conditions. However, the SPM based cw dual-frequency method [4, 5], with its
simple measurement setup, gives accurate value of n2/Ae f f according to the mea-
surement conditions given in Refs. [4] and [6]. A description of the interferometric
method (method A) is given in the preceding sections. A brief description of the CW
dual method (method B) is given in the next section and we present an interlaboratory
fiber nonlinear coefficient measurements for Dispersion Shifted Fibers (DSF).

2.3.2 Self aligned interferometer method

The experimental setup and the principle of working is illustrated in Section 2.1.2. This
method is hereafter referred to as method A.
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2.3.3 SPM based CW dual–frequency method

When two intense signals with wavelength separation of ∆λ are launched into a fiber,
SPM acts on the beat envelope to create sidebands in the frequency domain. Then, the
optical power ratio of the input signals (I0) to the first sideband (I1) is related to the
nonlinear phase shift φSPM. When the chromatic dispersion is negligible, this relation-
ship can be expressed as (4) using n-th order Bessel function Jn.

I0
I1

=
J2

0(φSPM/2)+J2
1(φSPM/2)

J2
1(φSPM/2)+J2

2(φSPM/2)
(2.6)

Moreover, the relationship between φSPM and nonlinear coefficient can be expressed as

φSPM=
4π
λ

Le f fP
n2

Ae f f
(2.7)

where P shows the average launched power. Thus, the nonlinear coefficient can be
obtained by measuring the optical power ratio I0/I1 with various launched power ac-
cording to the measurement conditions given in Refs. [4] and [5]. The setup of the
SPM based cw dual-frequency method is shown in Fig. 2.6. This method is hereafter
referred to as method B.

2.3.4 Experimental results

The measurements were done on three different fibers. A DSF fiber with λ0 =
1556.4 nm, S=0.067 ps/nm2/km (DSF-1), a DSF fiber with λ0 = 1548.6 nm, S=0.060
ps/nm2/km (DSF-2), and a standard single mode fiber with λ0 = 1300 nm (G-1). Fibers
DSF-1 and DSF-2 were also measured at NTT utilizing the self-phase modulation based
cw dual-frequency method. For each fiber different measurements were taken on dif-
ferent days in order to test the reproducibility of our measurements. The correspond-
ing results are summarized in Tab. 2.3 for method A. Note that the maximum absolute
deviation from the average (MD) is used to characterize the reproducibility. Generally
the reproducibility is quite good (¡5%) although it varies somewhat from fiber to fiber
(see Tab. 2.3). Tab. 2.4 reports the values found with method B. Here instead of the
MD, the standard deviation (SD) of different measurements is given. As one can see,
the values are in good agreement with differences within the experimental errors. Us-
ing method A measurements were then performed as a function of the fiber length.
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Figure 2.6: Experimental setup of the SPM based cw dual-frequency method. PC polarization con-
troller, EDFA Erbium doped fiber amplifier, BPF Band pass filter, ATT Variable attenuator, PM Power
meter, OSA Optical spectrum analyzer, FUT fiber under test. PM1 is used to monitor the power at the
entry of the FUT and PM2 to monitor the back-reflected power along the FUT due to Brillouin scattering.
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Fiber Length λ0 Ae f f (µm2) n2/Ae f f (VALUE) n2/Ae f f (MD)
(m) (nm) 10−10W−1 10−10W−1

DSF-1 (DSF) 1990 1556.4 44.5 6.4 2%
DSF-2 (DSF) 1990 1548.6 41.1 6.3 5%

Table 2.3: Values of n2/Ae f f for different fibers as measured with the selfaligned interferometric
method. For the values measured with method A, the maximum absolute deviation from the average
(MD) is used to characterize the reproducibility. For method B the standard deviation is shown.

Fiber Length λ0 Ae f f (µm2) n2/Ae f f (VALUE) n2/Ae f f (MD)
(m) (nm) 10−10W−1 10−10W−1

DSF-1 (DSF) 1990 1556.4 44.5 6.3 5%
DSF-2 (DSF) 1990 1548.6 41.1 6.6 5%

Table 2.4: Values of n2/Ae f f for different fibers as measured by NTT. For the values measured with
method A, the maximum absolute deviation from the average (MD) is used to characterize the repro-
ducibility. For method B the standard deviation is shown.

We made a fiber cut-back procedure and for each fiber length we measured the non-
linear coefficient on a standard telecom fiber (G-1) with lengths ranging from 12 km
to 2 km. For each length at least 3 measurements were taken in order to acquire some
statistics and to find the error bars. All values are within a standard deviation of 6%
demonstrating that method A is insensitive to the fiber lengths even for large values of
chromatic dispersion.

2.3.5 Conclusion

In this section we have presented an interlaboratory comparison of n2/Ae f f measure-
ments on the same test fibers as measured by two different institutions using different
methods, an interferometric method and a cw dual-frequency method. Good agree-
ment between the measured values was found.



Chapter 3

Nonlinear Polarization Rotation and
Optical Switching in Optical Fibers.

3.1 Nonlinear Polarization Rotation in Optical Fibers

In this section we present both a theoretical and experimental analysis of the non-
linear polarization rotation in an optical fiber. Starting from the coupled non-linear
Schrödinger equations an analytical solution for the evolution of the state of polar-
ization, valid for fibers with large linear birefringence and quasi cw input light with
arbitrary polarization, is given. It allows to model straightforwardly go-and-return
paths as in interferometers with standard or Faraday mirrors. In the experiment all the
fluctuations in the linear birefringence, including temperature and pressure induced
ones, are successfully removed in a passive way by using a double pass of the fiber
under test with a Faraday mirror at the end of the fiber. This allows us to use long
fibers and relatively low input powers. The match between the experimental data and
our model is excellent, except at higher intensities where deviations due to modulation
instability start to appear.

3.1.1 Introduction

The potential of nonlinear polarization rotation (NPR) to build ultrafast devices has
been recognized a long time ago and received considerable attention since then. It has
been proposed to exploit it for optical switches [6], logic gates [7], multiplexers [8],
intensity discriminators [9], nonlinear filters [10], or pulse shapers [11]. However, an

41
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inherent problem to all these applications is the stability of the output state of polariza-
tion, generally subjected to fluctuations of the linear birefringence caused by tempera-
ture changes and perturbations in the fiber environment. Of course, the same problem
was also encountered in the few experiments dealing with the characterization and
measurement of the NPR itself. In Ref. [12], the fluctuations of the output polarization
were too strong to allow a meaningful measurement of NPR in a polarization main-
taining fiber at 1064 nm, and in Ref. [13] , where 514 nm light was injected into a 60 m
long fiber with a beatlength of 1.6 cm, a complicated arrangement had to be employed
for the extraction of the changes caused by temperature drifts.

As the fluctuations become worse for fibers with a large birefringence, and as the ef-
fect of NPR is proportional to the inverse of the wavelength, it is hard to measure NPR
directly in a polarization maintaining (PM) fiber at the telecom wavelength of 1.55
µm. In this work we propose a method for removing the overall linear birefringence,
and therefore also its fluctuations, in a passive way by employing a Faraday mirror
[14] (FM) and a double pass of the fiber under test. To check how this -nowadays
standard- method [15, 16, 17, 18] of removing linear birefringence acts on the NPR,
we develop in Subsection 3.1.2 of this section a simple model to calculate the action
of linear and nonlinear birefringence. Using this model, it is then easy to show that
the proposed method removes the overall linear birefringence only, whereas the non-
linear one, leading to NPR, remains unchanged. After describing the experimental
set-up, the results of our NPR measurements using a FM are presented in Subsection
3.1.3, along with the predictions from our analytical model. The excellent agreement
between the two demonstrates that using the FM, the overall linear birefringence is
indeed removed completely, allowing to observe the NPR otherwise hidden within
the noisy background of polarization changes due to environmental perturbations.
This result also validates our method for possible implementation with a variety of
other applications like the ones mentioned at the beginning of this subsection, with the
prospect of drastically increasing their polarization stability.

3.1.2 Theoretical background

In a dielectric medium, an intense elliptical input pulse induces birefringence - via
the optical Kerr effect - due to the different amounts of intensity along the major and
minor axis of the polarization ellipse. It is well known that in isotropic media, this self-
induced birefringence leads to a rotation of the polarization ellipse while propagating
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Figure 3.1: Evolution of the state of polarization as represented on the Poincare sphere. (a) Polarization
ellipse self rotation in an isotropic medium. The Stokes vector is rotating around the σ3 axis with an
angle proportional to the length of the medium, the input intensity, and the sin of the input ellipticity.
(b) High birefringence fiber. The rotation of the Stokes vector mainly consists of a fast rotation around
the axis of linear birefringence σθ, whereas the slow rotations due to the nonlinear birefringence can be
considered as small perturbations.
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in the medium [38, 39] (the effect is consequently often called polarization ellipse self-
rotation and its representation on the Poincare sphere is shown in Fig. 3.1(a). In fact,
measuring this ellipse rotation is one of the standard ways to evaluate the cubic optic
nonlinearity of the medium [24]. In an optical fiber however, the situation becomes
more complicated as there is also the local intrinsic birefringence to be considered.
Generally, the polarization ellipse changes are hard to predict in that case as the linear
and nonlinear birefringence interact in a complicated manner.

To formulate this more precisely, we start with the coupled non-linear Schrödinger
equations describing the propagation of light in an optical fiber. For cw input light,
time derivatives drop out, and we can write the equation in a form similar to that of
Menyuk [40] when assuming a lossless, linearly birefringent fiber and by neglecting
polarization mode coupling:

∂zψ =−i (ωBσθ +ωα < σ3 >ψ σ3)ψ; B >> α (3.1)

ψ = (E1,E2)t is the Jones column vector representing the two components of the com-
plex transverse electric fields E1(z) and E2(z) at the position z along the fiber. The first
term on the right hand side describes the linear birefringence, where ω is the optical
frequency and B the birefringence (in s/m). Note that B is assumed to be indepen-
dent of ω, an excellent approximation for standard fibers. The phase birefringence ωB

is multiplied by σθ = σ1cos(θ) + σ2sin(θ), corresponding to linear birefringence in
the θ direction, with σ1,2,3 being the 2x2 Pauli matrices. The second term on the right
hand side of Eq. (3.1) accounts for the nonlinear birefringence, with α = n2P

3cAe f f
, and

< σ3 >ψz=
|E1|2−|E2|2
|E1|2+|E2|2

. P is the total light power, n2 the nonlinear refractive index, Ae f f

the effective mode area, and c the speed of light.
For an intuitive understanding of the action of the two terms on the right hand side

of Eq. (3.1), it is better to revert to the Stokes formalism. On the Poincare Sphere, the
first term describes a rotation of the polarization vector (Stokes vector) around axis σθ,
lying on the equator and corresponding to linear birefringence. Similarly, the second
term is a rotation around the vertical axis corresponding to nonlinear birefringence.
However, Eq. (3.1) shows that the speed and the rotation direction in this case depends
on the polarization state through < σ3 >ψ, as is illustrated in Fig. 3.1(b). Consequently,
the two rotations are linked in a complicated manner, and the resulting evolution of
the polarization vector is not obvious.

Fortunately, in standard telecom fibers, the speed of rotation around the vertical
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axis is much smaller than the one around the birefringent axis σθ even at considerable
power levels. This is because in such fibers B >> α (see Eq. (3.1)). For example, a fiber
with a beat length of 10 m has B≈ 0.5 ps/km while α ≈ 0.006 ps/km for a power of 10
Watts (λ=1550 nm, n2=3.2·10−20, Ae f f=60 µm2) (note that in this work, a PM fiber will
be used with a beat length in the mm range, making the ratio B

α as large as 107). The
slow rotation due to the nonlinear birefringence can therefore be treated as a perturba-
tion that merely changes the angular frequency of the fast rotation caused by the linear
birefringence. This becomes more obvious by rewriting Eq. (3.1) as

∂zψ =−iωBσθψ− iωα
1
2
(< σ3 >ψ σ3 +(1−< σθ+ π

2
>ψ σθ+ π

2
−< σθ >ψ σθ))ψ (3.2)

where the identity ψ =< σ >ψ σψ, valid for all ψ, has been used. The term proportional
to ψ affects only the global phase and can be neglected. Further, the two terms <

σ3 >ψ σ3 and < σθ+ π
2

>ψ σθ+ π
2

cancel each other to first order - this can be intuitively
understood from Fig. 3.1(b) and was confirmed by numerical simulations - producing
only a small (second order) precession of the instantaneous rotation axis. Hence we
obtain the following approximation for the evolution of the polarization vector:

∂zψ ≈−iωBe f fσθψ (3.3)

with the effective birefringence

Be f f = B− α
2

< σθ >ψ (3.4)

depending on the intensity and the polarization state of the input light signal. Note
that Eq. (3.3) preserves the square norm | ψ |2 reflecting that we did not take into ac-
count losses. Note further that when applying Eq. (3.3) for linearly polarized input
light we obtain the same formula as in Ref. [9].

The solution of Eq. (3.3) is straightforward, ψz = exp(−iωBe f fσθz)ψ0, and corre-
sponds to a rotation of the input polarization vector around the linear birefringence
axis σθ, with a rotation angle β given by

β = ω(B− α
2

mθ(0))z. (3.5)

mθ(0) is the projection of the input polarization vector on the birefringence axis σθ, and
z the distance from the input end.
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In principle, the NPR, caused by the nonlinear response of the single mode fiber
to the input state, could now be measured by varying the input power and observing
the corresponding change in the output polarization vector. However, from a practical
standpoint, this will be hardly possible as Eq. (3.5) shows that slightest changes in the
linear birefringence B will completely cover the nonlinear, intensity dependent ones
(remember that B>> α for reasonable input power levels). Indeed, earlier work [13, 25]
greatly suffered from temperature and pressure induced changes of B always present
in a lab environment, even though they were using short fibers.

Nowadays, a simple and efficient way to get rid of any kind of fluctuations in the
intrinsic birefringence is to make a double pass of the fiber under test by means of a
Faraday mirror [14, 15] (FM). The linear birefringence accumulated during the forward
path is then automatically compensated on the return path. However, it is not a priori
clear what will happen to the nonlinear birefringence.

To investigate this point, we rewrite the solution of Eq. (3.3) in the Stokes formalism,

m(L) = R̂θ(β(L))m(0) (3.6)

where m(0) is the input Stokes vector, R̂θ is a rotation operator around the axis σθ, and
β is as given by Eq. (3.5). Applying the action of the FM, mF(L) = −m(L) (the suffix F
indicates the state of polarization after reflection from the FM), and of the return path,
R̂−1

θ , we get

mF(2L) = R̂−1
θ [ωL(B− α

2mF
θ (L))]R̂θ[ωL(B− α

2mθ(0))]m(0) =
= −R̂θ[ωαLmθ(0)]m(0).

(3.7)

The result shows that the rotation due to the nonlinear birefringence of the forward
and return path do not cancel out but add, giving twice the angle compared to a single
(forward) trip through the fiber (Eq. (3.5)). This is because the rotation direction of the
nonlinear birefringence is different for the upper and lower hemisphere of the Poincare
sphere (see Fig. 3.1(b)) contrary to birefringence in linear optics. Therefore, after reflec-
tion at the FM, which transforms the polarization state to its orthogonal counterpart
(i.e. flipping it to the other hemisphere), the sense of rotation of the NPR during the
return path will be the same as the forward path and the effects add up.



Chapter 3 Nonlinear Polarization Rotation and Optical Switching in Optical Fibers. 47

Pulse
Generator

DFB EDFA

PC2 PBS

90/10

FM PC1
FUT

Figure 3.2: Experimental setup of the NPR measurement. DFB distributed feedback laser, EDFA
Erbium doped fiber amplifier, PC polarization controller, FUT fiber under test, FM Faraday mirror, PBS
polarizing beam splitter

3.1.3 Experimental

Set-up

The experimental setup used to measure the NPR is shown in Fig. 3.2. The light source
is a distributed feedback laser diode (DFB) operated in pulsed mode at a wavelength
of 1559 nm, consecutively amplified by an EDFA (small signal gain 40dB, saturated
output power 23dBm). Typically, pulses with a duration of 30 ns, a repetition rate of 1
kHz, and a peak power of up to 6 W were used. The light is then launched into the test
fiber via a 90/10 coupler and a polarization controller. The coupler was inserted for
the detection of the backward traveling light after the double pass of the test fiber, with
its 90 output port connected to the source in order to maintain the high launch powers
into the test fiber. The polarization controller, PC1, allowed to adjust the polarization
of the light launched into the test fiber, which is important for the strength of the NPR
as demonstrated by Eq. (3.5). In order to satisfy the assumption of neglectable polar-
ization mode coupling used in the previous section, a highly birefringent, polarization
maintaining (PM) fiber was used as the test fiber. Its linear birefringence B is of the
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order of 5 ps/m, corresponding to a beat length in the mm range. The fiber length was
200 m, giving a total of 400 m round-trip length of the light reflected by the FM.

The polarization state of the light after the double pass of the test fiber was exam-
ined by an analyzer consisting of a polarization controller PC2 and a polarizing beam
splitter (PBS). To achieve a good sensitivity of the analyzer, it was calibrated to give a
50/50 output of the PBS for low power signals where no nonlinear polarization rota-
tion occurs. Finally, the two PBS output channels were monitored by a fast photodiode
(200 ps response time) and a sampling scope.

The measurements were then performed in the following way: for a given launch
power, the polarization controller PC1 was adjusted to give the smallest possible out-
put power at the monitored PBS channel. Consequently, the difference between the
two PBS output channels is maximized, corresponding to a maximum value of the
NPR.

Results

The experimental results are shown in figures 3.3 and 3.4.
In Fig. 3.3, the minimum output power (squares) of the monitored PBS channel is

given as a function of the peak power in the test fiber. Note that the reported output
power was normalized to account for the analyzer losses and corrected for the PBS
extinction ratio. Consequently, without any NPR, the reported output power would
equal half of the power in the test fiber (solid line). As can be seen in Fig. 3.3, the
effect of NPR is negligibly small up to about 0.5 W. For higher launch powers, NPR
manifests itself by a reduction of the power in the monitored PBS channel. In fact, its
action becomes so strong that for launch powers above about 2.5 W, the output power
starts actually to decrease in spite of the linear increase that would be experienced in
the absence of NPR. In principle, this power drop should continue until the nonlinear
rotation of the input polarization is such that all the power is in the other PBS chan-
nel. However, as Fig. 3.3 shows, this is not happening. The observed increase in the
minimum output power could be related to modulation instability a phenomenon in
which a CW signal becomes amplitude and phase modulated as a result of the inter-
play between the nonlinearity and the dispersion of the medium (this effect manifest
itself with the appearance of two sidebands one shifted up in frequency and the other
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Figure 3.3: Minimum output power of PBS channel 1 as a function of the launched power for a 200 m
long PM fiber. Squares: measured data, solid curve: prediction from our model, straight line: prediction
in the absence of NPR. The deviations of the experimental data from the predicted values at high powers
are due to modulation instability not included in the model.

shifted down by the same amount): above 4.5 W launch power, a Stokes and Anti-
Stokes sideband shifted by 2 nm with respect to the laser peak appeared. These side-
bands are generated in a distributed fashion along the test fiber, which means that the
compensation of the linear fiber birefringence is failing. Therefore, and due to the large
birefringence B of the PM fiber used, the sidebands will be almost randomly polarized
at the output. As a consequence, about half of the power transferred to the sidebands
will appear in the monitored PBS output channel leading to the observed increase in
power.

Further, the measured results were compared to the ones predicted by Eq. (3.7)
taking into account the analyzer calibration and the adjustment of PC1 as used in the
experiment. The parameters used in the computation were the ones from the experi-
ment, i.e. a fiber length of L=200 m, and a nonlinear coefficient of n2 =3.4·10−20 m2/W.
The effective core area of Ae f f = 41 µm2 was chosen to give a good match with the
experimental results as we had no exact value from the manufacturer. mθ(0), the pro-
jection of the input state of polarization on the birefringent axis, was varied in order to
give a minimum output power from the PBS channel, exactly like in the experiment.

The solid line in Fig. 3.3 shows these computed results. The figure clearly illustrates
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Figure 3.4: Minimum output power of PBS channel 1 as a function of the launched power for a 100 m
long PM fiber. Squares: measured data, solid curve: prediction from our model, straight line: prediction
in the absence of NPR.

that the measured data corresponds very well to the computed one. This validates our
measurement method of NPR in optical fibers and demonstrates that the linear bire-
fringence and its detrimental fluctuations are successfully removed by the FM. Above
an input power of 4.5 W, the curves deviate as expected from the onset of MI that was
not included in the analytical model.

Fig. 3.4 shows experimental and computed results for a fiber length of 100 m. Note
that to avoid cutting our 200 m piece, we emulated the 100 m fiber length by intro-
ducing a 20dB attenuation for the reflected light. Consequently, the light power on
the return trip is too low to induce NPR, and serves only to compensate for the linear
birefringence of the forward trip. As the figure demonstrates, NPR is indeed reduced
by a factor of 2 compared to the measurements without attenuator, as expected from
Eq. (3.7). Twice the launch power is required to compensate for the shortened length to
get the same amount of NPR. Again, experimental and computed data are in excellent
agreement.

The experimental results of this section clearly demonstrate that one can indeed
use a FM to remove the overall linear birefringence, which allows to observe smallest
nonlinear effects otherwise hidden within the noisy linear birefringence. Note that
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the change in the output polarization due to environmental perturbations is especially
pronounced in PM fibers (when the input is not aligned with one of the two fiber axes)
due to its short beat length in the mm range. For example when not using a FM, the
output polarization changed drastically from just the body heat when approaching the
PM fiber spool, inhibiting any meaningful measurement.

3.1.4 Conclusion

Starting from the non-linear Schrödinger equations, an analytical solution for the evo-
lution of the state of polarization in a high birefringence optical fiber has been devel-
oped. It allows for a simple and straightforward modeling of go and return paths as
e.g. in interferometers with standard or Faraday mirrors. Using this model, we showed
that it is possible to remove the overall linear birefringence in a double-pass arrange-
ment with a FM while leaving at the same time the nonlinear birefringence, resulting
in NPR, unchanged. Only this allowed to measure the NPR in a long PM fiber at tele-
com wavelength in a lab environment where it is otherwise hidden by the changes in
the output polarization caused by temperature and pressure fluctuations.

The experimental results for the NPR obtained with a 200 m long PM fiber at a
wavelength of 1.55 µm were in excellent agreement with the theoretical predictions
from our model for launch power up to 4.5 W. Above that value deviations due to
modulation instability, not included in our model, were present.

Due to its generality, the presented method of removing the linear birefringence
while leaving the nonlinear one unchanged might prove to be a very valuable tool in
numerous other applications as well, like e.g. optical multi-/demultiplexers.

Note that in the case of non-PM fibers, where the coupling between the polariza-
tion modes is not negligible, NPR is reduced due to a scrambling related to the ratio
between the coupling length and the fiber length. In fact, this effect can be exploited to
get information about the important coupling length parameter in standard fibers, as
will be shown in Section 3.3.
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3.2 All Optical Switching in a PM Fiber and SMF Fiber

In this section we demonstrate all-optical switching at 1.5 µm based on induced non-
linear polarization rotation, in both a polarization maintaining and a standard telecom
fiber. We have obtained an excellent switching stability in both cases by removing any
detrimental temperature or pressure induced changes of the output polarization state
with a Faraday mirror stabilization scheme.

3.2.1 Introduction

Considering the high bit rates of future optical fiber communication systems, optical
signal processing could soon become a necessity. In order to demux a single chan-
nel from a 100 Gb/s time division multiplexed (TDM) signal e.g., a switching time of
less then 5 ps will be required. All-optical switching techniques based on the optical
Kerr effect [8, 19, 20, 21, 22, 23] are very attractive in that respect due to the ultra-
fast Kerr response [24, 25, 26] of less than a few fs. Indeed, an all optical Kerr switch
was demonstrated recently that read out a 10 Gb/s channel from a 40 Gb/s TDM sig-
nal [6]. Besides the standard switch parameters like switching ratio, insertion loss or
switching time, the stability of the switch is an important issue. Variations in the input
control or signal polarizations as well as changes of the intrinsic birefringence of the
Kerr medium will affect the switch. Variations of the input signal polarization can be
dealt with by adopting a polarization diversity scheme, like e.g. in Ref. [6]. In order to
keep the switch stable internally, the control pulse polarization should be kept as stable
as possible by using a proper set-up. Moreover, changes in the signal polarization in
the Kerr medium (typically a polarization maintaining PM fiber) due to changes in the
intrinsic fiber birefringence have to be avoided since they can greatly reduce the ex-
tinction ratio of the switch. An active correction scheme (e.g. a polarization controller
[12] with a feedback loop) is typically not rapid enough to correct the fast, acoustical
perturbations, and may not work at all for large changes due to its limited range of
operation.

To avoid these problems, we use on one hand a non-interferometric switch1, and on
the other hand a passive stabilization scheme. In interferometric switches like Sagnac
loops or Mach-Zehnder interferometers (IF), the switching is based on a phase-shift

1“Non-interferometric” in the sense that the signals being interfered are not from two physically sep-
arate arms. Of course linear optics is always interferometric in a strict sense of the word (superposition
principle).
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induced between the two different propagation directions or arms, respectively. If the
signal is not carefully launched into an axis of a PM fiber, it will split into 4 different
polarization modes, two in each propagation direction or interferometer arm, respec-
tively. In addition to the phase-shift between the two different propagation directions
or interferometer arms, additional ’local’ phase-shifts between the polarization modes
with the same propagation direction (or within the same IF arm) will degrade the
switch quality. In the switch presented here, this problem is avoided by uniquely us-
ing this ’local’ phase-shift between the two signal polarization modes in a single fiber,
thereby reducing the relevant mode number to two. Having two modes only, we can
then use a passive stabilization scheme that works both for fast and slow, arbitrarily
large changes in the fiber birefringence. Although in this work an optical fiber is used
to induce a nonlinear phase-shift, it should be noted that the stabilization scheme holds
as well for any other Kerr elements (e.g. semiconductor saturable absorbers SOA).

3.2.2 Principle of operation

As mentioned above, the principle of the optical Kerr switch presented here is based
on an induced phase-shift between the two signal polarization modes in a single fiber.
It is induced by powerful control signal pulses that lead to a different phase-shift (via
the optical Kerr effect) for signal components with the same and orthogonal polar-
ization, respectively. The corresponding change in the output signal polarization is
maximized if the control signal polarization matches the polarization of one of the two
signal polarization modes during the entire propagation in the Kerr fiber. By inserting
a polarizing beam splitter (PBS), the signal is switched between the two PBS output
ports depending on the amount of the induced phase-shift.

For a control pulse linearly polarized along one of the birefringent axis of a PM
fiber, it is easy to show that the phase shift ∆φ acquired by a signal linearly polarized
at 45 degree is [2]

∆φ =
8
3

π(
Le f f

λ
)n2

P
Ae f f

(3.8)

where n2 is the nonlinear refractive index of the fiber, λ is the signal wavelength, Ae f f

is the effective area of the fiber and P is the peak pump power. Fiber losses are included
in the effective length Le f f= 1/α[1-exp(-α L)] where L is the length and α the fiber loss
coefficient. For a PBS adjusted so that all the signal is at output port 2 when the control
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pulse is absent, the signal at output port 1 becomes

T = sin2∆φ
2

. (3.9)

where the induced phase shift ∆φ is given by Eq. (3.8). A different wavelength is conve-
niently used for the control pulses so that they can be combined with the signal using
a wavelength division multiplexer (WDM). As a consequence, a walk-off between the
control pulses and the signal is introduced, ultimately limiting the switching time. A
large walk-off also enlarges the required control peak power because of a reduced in-
teraction length (i.e. smaller Le f f in Eq. (3.8)). To keep the switch fast and efficient,
either a fiber with low group dispersion has to be used, or the wavelength separa-
tion should be kept as small as possible. The latter leads to a trade-off between the
switching time (determined by the walk-off) and the extinction ratio (determined by
the WDM filtering). For a detailed analysis, the reader is referred to Ref. [20].

It is very important to notice that the transmission given in Eq. (3.9) holds only for
a fixed intrinsic birefringence of the fiber. Any fluctuation of this birefringence, caused
e.g. by temperature drifts or pressure changes, leads to an additional phase-shift ran-
domly changing the bias of the switch. In order to reduce this effect detrimental for
the switch stability, different methods have been proposed [12, 20]. A very promis-
ing solution is to make a double pass of the fiber by means of a Faraday mirror (FM)
[14, 15, 16, 18]. The FM transforms any input polarization state to the orthogonal one
upon reflection. Consequently, the signal components that were polarized parallel to
the fast axis during the forward propagation will be polarized parallel to the slow axis
during the return path and vice versa. The overall acquired phase is therefore the same
for any input polarization, and the intrinsic birefringence is automatically removed as
long as it is stable during a single round-trip path. In this way, fluctuations with fre-
quencies up to about 0.5 MHz (200 m long fiber) can be removed.

Although the application of a FM is widely spread in linear optics, we believe to
be the first ones having demonstrated its usefulness for nonlinear optics as well. Espe-
cially, we showed in Ref. [23] both theoretically and experimentally that only the linear
phase fluctuations are removed, whereas the purposefully induced nonlinear effects of
the go and return-path add up. This allowed to measure the nonlinear polarization
rotation in an optical fiber.
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3.2.3 Set-up

The setup of the Kerr switch using the described stabilization scheme is shown in
Fig. 3.5. The control signal was generated by a directly modulated DFB laser diode
with a wavelength of 1559 nm, amplified by an EDFA with a small signal gain of 40 dB
and a saturated output power of 23 dBm. The pulses from the DFB laser had a dura-
tion of 28 ns with a repetition rate of 1 kHz. This is good enough to demonstrate the
usefulness of the stabilization scheme and the basic functioning of the switch - in an
application, shorter control pulses at a higher repetition rate could be used. In order
to have a larger side-mode suppression of the DFB output at the signal wavelength,
an external small band pass filter (“notch” filter) was inserted after the EDFA. Using a
WDM, the control pulses were then coupled into the Kerr fiber along with the signal
consisting of cw light generated by a second DFB at 1556 nm. The signal power in
the Kerr fiber was -1.8 dBm, whereas several Watts of control pulse peak power were
available. For the Kerr medium, we first used a PM fiber with a length L of 200 m. The
wavelength difference ∆λ of 3 nm between control and signal light consequently leads
to a walk-off of about 10 ps (assuming a GVD value of D = 17 ps/km nm):

∆t ' DL∆λ ' 10ps

This value represents a lower limit for the (0–100)% rise/fall time of the switch. For
even shorter switch times, a dispersion shifted fiber (DSF) would have to be used. For
the initial adjustment of the switch, the polarization of both control pulses and signal
could be set independently by polarization controller PC1 and PC2, respectively. This
allows both for the pump to be launched into a birefringent axis of the PM fiber and
for the signal polarization to be set at 45 deg to this axis for a maximum switching ratio
at the output. At the end of the PM fiber the pump was removed with a second WDM,
whereas the signal was reflected back with a Faraday mirror. Note that the control
pulse was removed by the second WDM and not by the first one -after a double pass
of the FUT- because one filtering was not enough to remove the control and the signal
at the line and switch ports would have been covered by the residual control. After
this double pass, the reflected signal is sorted out by a circulator and put on a PBS.
The switch is biased by another polarization controller PC3, which allows to set the
desired ratio of the signal light at the two PBS output ports. Typically, it was adjusted
for maximum power in port 1 (line port), i.e. minimum power in port 2 (switch port)
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Figure 3.5: Experimental setup. DFB distributed feedback laser, EDFA Erbium doped fiber amplifier,
PC polarization controller, FM Faraday mirror, PBS polarizing beam splitter, WDM wavelength division
multiplexer
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in the absence of control pulses. The switch port, for which Eq. (3.9) holds, was then
monitored using a fast photodiode with a response time of 200 ps. The extinction ratio
of the switch mainly depends on the extinction ratio of the PBS (20 dB in our case) and
on the control signal power suppression at the signal wavelength (60 dB in our set-up).
If necessary, higher values could be obtained by using additional polarization selection
or filtering. Note that the required control signal peak power (or fiber length) could in
principle be reduced to half its value if the pump is not removed at the FM, thereby
allowing a double pass of the Kerr fiber. The switch performance is still independent
of the control pulse pattern in that case as long as the total power of the control signal
within half the round-trip time (1 µs in our case) doesn’t change too much, a situation
typically realized when switching high bit rate signals.

3.2.4 Experimental results

PM fiber

The experimental results using a 200 m PM fiber as the Kerr medium are shown in
Fig. 3.6 and Fig. 3.7.

The proper working of our stabilization scheme was checked by monitoring the
output power at the switch port for several hours. After the initial setting of the switch,
it was left alone without any re-adjustments for a time period of several hours, while
a normal activity in the lab was maintained, with people working around the table.
Moreover, a change in the temperature of 5 degrees was observed during that time
span. The measured fluctuations of the switch port signal power are shown in Fig. 3.6.
Besides the measured data points (squares), the mean value (bold line) and the stan-
dard deviation σ (thin lines) are shown. As is demonstrated by the figure, the obtained
switch stability was rather good (less than 2% fluctuations) when using the Faraday
mirror. When it was replaced by a normal mirror on the other hand, thereby remov-
ing the stabilization, the switch port signal output power rapidly changed in the range
from zero to full switch power. Indeed, it is well known that the polarization of light
coupled into both the birefringent axes of a PM fiber - due to its short beatlength of
only a few mm - is very susceptible to any perturbation. The use of a stabilization
is therefore an absolute necessity. Fig. 3.7 gives the normalized switching ratio as a
function of the applied control signal peak power. The normalized switching ratio is
defined as the ratio of the actually measured power from the switch port, divided by
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Figure 3.6: Switch performance using a 200 m PM fiber. Relative fluctuations of the switch port signal
power as a function of time. Measured data (squares), mean value (bold line), and standard deviation σ
(thin lines).
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Figure 3.7: Switch performance using a 200 m PM fiber. Normalized switching ratio as a function of
the control signal power. Measured data (squares), theoretical fit (solid line).
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the maximum signal power obtainable from that same port (measured by adjusting
PC3 for maximum transmission to the switch port in the absence of control pulses).
The experimentally obtained values (squares) are compared with a fit (solid line) us-
ing Eq. (3.9) and requiring a peak normalized switching ratio of 1. As the figure shows,
the experimental data corresponds well with the model (statistical χ2 = 0.8). The max-
imum switching ratio we could obtain in the measurement was however only 65% for
a control peak power of 1.7 W. For higher control powers, the signal started to exhibit
strong power fluctuations within the temporal switch window of 28 ns, which inhib-
ited a proper functioning of the switch. As revealed by the optical spectrum, these
fluctuations were caused by the onset of concurring nonlinear effects normally absent
until much higher peak power times distance values. We believe that our non-optimal
control signal source (side-band suppression) was seeding the observed nonlineari-
ties, leading to a much lower threshold power. The observed limit in the switch ratio is
therefore not a general problem of the demonstrated switch technique, but was unique
to our experimental set-up.

Standard fiber

Further, we analyzed the possibility to use a standard (i.e. non PM) fiber for the Kerr
medium. Besides reducing the switch cost, the assembly of the switch is much eas-
ier using standard than PM fiber, and the insertion loss can be reduced as the splice
losses are lower. In order for the switch to work properly and efficiently, the part of
the signal having the same polarization as the control signal at the input should keep
the same polarization as the control during propagation, whereas the orthogonal part
should stay orthogonally polarized. Only in this way an important phase shift between
these two signal components can build-up. It is obvious that the above requirement is
perfectly fulfilled in a PM fiber, where a signal component that is coupled into one
of the two fiber axes remains there during propagation. In a standard fiber however,
the situation is different. The above requirement, which corresponds, on the Poincare
sphere, to a conservation of the angle between the control and signal Stokes vectors
during propagation, is no longer met exactly. This is because the polarization mode
coupling (specified by the coupling length h [28]) present in the standard fiber leads
to a coupling of the control and signal light into both the (local) fiber axes, where they
will evolve differently due to their different beatlengths. The conservation of the angle
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between the control and signal Stokes vectors consequently depends on the fiber char-
acteristics (coupling length h, beatlength Lb) and on the wavelength difference between
the control and signal light. We therefore first verified that this angle conservation was
sufficiently good in the standard fiber to be used as the Kerr medium. As a simple
estimate, we can use

α = 2πL(1/Lb(λsignal)−1/Lb(λcontrol))

where Lb(λ) = λ/(cB) and the birefringence B [ps/m] is assumed to be independent of
the wavelength. The estimate represents a worst case scenario as the coupling length h
is assumed to be much larger than the fiber length L and that both signal and control
pulses were coupled into both fiber axes at the input. Using the wavelength difference
of 3 nm of our experiment, and a typical value of the signal beatlength of 10 m, we
get an angle difference of just 7 deg after 100 m of fiber, which should not cause any
problems. Analysis of the Jones transfer matrix measured at both the signal and control
wavelength further suggests that the angle should be sufficiently conserved. However,
these simple estimates neglect nonlinear polarization evolution like e.g. a self-rotation
of the intense control signal [23]. The testing of the switch was performed in a similar
way as described in the previous subsection. However, as there is no well defined axis
into which to couple, the input states of polarization were varied until a maximum in
the switching ratio was found, although the differences were not that large due to an
apparently small coupling length h of the employed Kerr fiber. This small coupling
length quickly leads to a randomization of the fiber axes and makes the results almost
independent from the input polarization of the control signal. On the other hand, the
effective phase shift acquired by the signal is reduced by this randomization, and we
had to use a longer Kerr fiber of 680 m to obtain a sufficiently large rotation of the
signal at the fiber output.

As can be seen in Fig. 3.8, the stability was once more excellent when employing the
FM. Fig. 3.9 shows the observed switching ratio as a function of the control peak power.
The obtained switching ratio corresponds to 90% (for control pulses with a peak power
of 2.4 W) before other concurring nonlinear effects once more lead to a pulse break-up.
The experimental data are not too different from the ones for the PM fiber (Fig. 3.7),
i.e. the longer length of the standard fiber (∆L= +480 m compared to the PM fiber
used before) accounts well for the phase-shift reduction caused by the “polarization
scrambling” and the different value of the ratio n2/Ae f f. The use of a standard fiber is
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Figure 3.8: Switch performance using a 680 m standard fiber. Relative fluctuations of the switch port
signal power as a function of time. Measured data (squares), mean value (bold line), and standard
deviation σ (thin lines).
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therefore also interesting from a physical point of view, as the functioning of the switch
could be exploited to reveal information about the coupling length of the standard fiber
as will be seen in the next section.

3.2.5 Conclusion

In this section we have successfully demonstrated all-optical switching at 1.5 µm based
on induced nonlinear polarization rotation in both a polarization maintaining and a
standard telecom fiber. The insertion of a Faraday mirror after the Kerr fiber led to a
very good stability of the switch for both cases.

In the standard fiber, switching was made possible because the small difference be-
tween the control and signal wavelength allowed for a similar evolution of both signals
along the fiber - the two corresponding Jones transfer matrices were found to be almost
equal - thereby well preserving the angle between the two respective Stokes vectors.
As a byproduct, the ratio n2/Ae f f can be determined, and using an appropriate model,
information about the coupling length h might be extracted as well.
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3.3 Determination of the coupling length

In this section we present a way to obtain the polarization coupling length, an impor-
tant parameter for the PMD probability distribution. This parameter is obtained from
measurements and modeling of the nonlinear polarization rotation in optical fibers.
Results for different types of fibers are presented

3.3.1 Introduction

It is well known that single-mode communication fibers are birefringent and that the
orientation and the amount of birefringence are randomly distributed along the fibers.
The corresponding polarization mode dispersion (PMD) becomes therefore a statistical
quantity, and not only its mean value but also its probability distribution is important
to assess the inferred system impairments. This distribution depends on two param-
eters: the (mean) local birefringence B and the polarization coupling length h, which
is the distance over which the E field looses memory of its initial projection over the
local polarization eigenstates [27]. In fibers having a length L long compared to h, the
probability distribution is Maxwellian with a mean PMD value of B, whereas for cou-
pling lengths approaching the fiber lengths, the PMD statistic can change considerably
[28]. It is therefore important to have knowledge not only of the overall PMD but also
of h and the beatlength Lb. In this section we present a novel way to directly infer the
polarization coupling length from measurements of the nonlinear polarization rotation
(NPR) in a fiber.

3.3.2 Principle of operation

In a dielectric medium, an intense elliptical input pulse induces birefringence - via the
optical Kerr effect - due to the different amounts of intensity along the major and minor
axis of the polarization ellipse. In an isotropic medium this self-induced birefringence
leads to polarization ellipse self-rotation. In an optical fiber however, the situation is
more complex due to the presence of the local intrinsic birefringence. The polarization
changes are hard to predict in that case as the linear and nonlinear birefringences inter-
act in a complicated manner. In general, the linear birefringence will however be much
larger than the induced nonlinear one, and the evolution of the polarization vector y
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in a polarization maintaining fiber can then be approximated by [23]:

∂zψ ≈ iωBe f fσθψ = ω(B− α
2

mθ(0))σθψ (3.10)

where σθ accounts for a linear birefringence with axis σ, α =n2P/(3cAe f f), n2 is the
nonlinear Kerr coefficient, P the power, and Ae f f the effective area. mθ(z) is defined as
the projection of the SOP on the birefringent axis at the position z along the fiber. The
term Be f f takes into account for the linear birefringence B and the nonlinear birefrin-
gence. The solution for Eq. (3.10) is straightforward, and corresponds to a rotation of
the input polarization vector around the linear birefringence axis σθ, with a rotation
angle β given by β=ωBe f fz. In principle the NPR can now be measured by varying the
input power P and observing the corresponding change in the output SOP. However,
an inherent problem for this kind of measurements is the instability of the output SOP
at the exit of the fiber. Due to temperature changes and drafts in the fiber environment
the dominant linear birefringence B strongly fluctuates and completely covers the non-
linear induced change. We have recently proposed a method for measuring NPR [23]
by removing the overall linear birefringence -and therefore also its fluctuations- in a
purely passive way by employing a Faraday mirror (FM) and a double pass of the
fiber under test. Doing so, the nonlinear birefringence (leading to NPR) was shown to
remain unaffected, i.e. the NPR of the forward and backward paths add up (see section
3.1). This allows to measure NPR both in polarization maintaining (PM) fibers and in
standard fibers. However, the random variations of the intrinsic local birefringence
axis in a standard fiber reduce the NPR. This reduction is due to the increased proba-
bility that the NPR action along each fiber’s piece where the birefringence is constant,
is compensated for by another. The situation becomes more complex, and we therefore
resort to numerical simulations. The fiber is modeled as a concatenation of linearly
birefringent trunks -for which Eq. (3.10) holds - with a constant physical length LC.
The amount of birefringence of these trunks is fixed (i.e. equal in all trunks), whereas
its orientation is driven by a white noise process gθ(z) characterized by a dispersion
σWN [27]. For each single trunk, Eq. (3.10) is used to calculate the output SOP from the
input one, which is calculated from the output SOP of the previous trunk according to
the relative axis orientations. The SOP is therefore calculated piece by piece, with the
projection mq being different for each new trunk. The final SOP will depend on the
choice of the birefringence axis orientations of the trunks, with variations being larger
in the limit of LC → L. We therefore made 200 runs for each specific trunk length to get
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a mean value of the NPR.

3.3.3 Experiment

The experimental setup for the measurement of NPR for different test fibers is shown
in Fig. 3.2. The light source consists of a distributed feedback laser (DFB) operated in
pulsed mode at a wavelength of 1559 nm. Typically, pulses with a duration of 30 ns,
a repetition rate of 1 kHz, and a peak power of up to 6 W (after amplification by an
EDFA) are used. The light is then launched into the fiber under test (FUT) via a 90/10
coupler and a polarization controller (PC1). The coupler is inserted for the detection
of the backward traveling light after the double pass of the FUT, with its 90% output
port connected to the source in order to maintain high launch powers into the FUT.
The polarization controller, PC1, allows to adjust the polarization of the light launched
into the FUT, i.e. mθ which is important for the strength of the NPR as demonstrated
by Eq. (3.10). Note that for low launch powers (negligible NPR), the action of PC1
is removed by the Faraday mirror, and its setting is therefore of no importance in that
case. The output SOP is examined by an analyzer consisting of a polarization controller
PC2 and a polarizing beam splitter (PBS). To achieve a good sensitivity of the analyzer,
it is calibrated for equal power in the two PBS output arms for low power launch
signals where no NPR occurs. The two PBS output channels were monitored by a fast
photodiode (200 ps response time) and a sampling scope. The measurements were then
performed in the following way: for a given launch power, the polarization launched
into the FUT was adjusted (PC1) to give the smallest possible output power at the
monitored PBS channel. Consequently, the difference between the two PBS output
channels is maximized, corresponding to a maximum value of the NPR.

3.3.4 Results and discussion

We first measured the NPR in a PM fiber with a length of 200 m. The results shown
in 3.1 indicate that the NPR manifests itself with a reduction of the power in the mon-
itored PBS channel. The output power starts to decrease in spite of the linear increase
that would be experienced in the absence of NPR. The measured data agree well with
our model, in which mθ(0) was varied in order to give a minimum output power from
the PBS channel like in the experiment, and only one fiber trunk was used (LC = fiber
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Figure 3.10: Minimum output power of PBS channel 1 as a function of the launched power. Symbols
refer to the measured data fiber A (open circles), B (full circles), and C (full squares). Solid curve:
prediction from our model. Straight bold line: prediction in the absence of any NPR. Bold curve: PM
fiber. In the inset are shown the values of the calculated h for different σWN and LC combinations giving
curves that fits the experimental data

length L). The model curve for the PM fiber is shown in Fig. 3.10 (bold curve). Mea-
surements were then made on different standard single mode fibers (SMF). The fiber
lengths were typically 1 km (simulations were adjusted accordingly to each fiber length
and n2/Ae f f coefficient). Fig. 3.10 shows the results for 3 different SMF; fiber A and B
with a PMD of .05 ps/km (open and full circles) and fiber C with a PMD of 1.9 ps/

√
km

(full squares). The three standard fibers clearly exhibit a different amount of NPR with
the fiber C showing a NPR similar to a PM fiber (bold curve). In order to fit the exper-
imental data we have to introduce the polarization coupling length h.

The coupling length is defined as the length at which the fiber autocorrelation func-
tion <cos[θ(z) -θ(0)]> is equal to 1/e. For the discrete case (as in our simulations) in
which each piece of fiber has a fixed length LC, it’s easy to show that h = 2LC/σ2

WN.
The fitting of the experimental data could then be made with two different free pa-
rameters; the length LC and the dispersion σWN of the white noise process, providing
h will remain constant. This is shown to be the case for our data as shown in the in-
set of Fig. 3.10. Here LC is varied between 5 and 200 m and σ2

WN between 10 and 70
degrees. The simulations show that for the three different fibers the coupling length
can be estimated to be about 160 m for the fiber A and 300 m for the large PMD fiber
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(fiber B). A value of h<100 m is quite reasonable for a state-of-the-art, low PMD fiber.
The coupling length of the SMF with high PMD (fiber C), found to e about 1000 m, is
surprisingly quite large, indicating that there might be well defined birefringent axes
in that fiber.

3.3.5 Conclusion

In this section we presented measurements and a model of NPR in an optical fiber, al-
lowing for direct determination of the polarization mode coupling length. Polarization
coupling length values as low as 160 m in state-of-the-art low PMD fibers were found.
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Chapter 4

Four Wave Mixing in Optical Fibers.

4.1 Photon Pair Generation in Optical Fibers

Pairs of correlated photons entangled in energy and time can be used as a resource
for quantum information processing. Up to now, photon pairs are mainly created in
non-linear crystals or waveguides, using parametric down conversion, a non linear
effect due to the second order susceptibility (χ2). Here instead, we propose to create
photon pairs directly in optical fibres, exploiting four wave mixing processes due to
the third order susceptibility (χ3). The advantage of creating photon pairs directly in
optical fibres is that we can avoid the losses due to the collection of pairs created in an
external source into the fibre. It also allows an all fibre operation, which is much more
practical for “real life” applications (e.g metrology)

4.1.1 Introduction

The response of a dielectric to the light becomes nonlinear for intense electromagnetic
fields. The origin of the phenomena is related to the anharmonic motion of the bound
electrons in response to an applied field. As a result the induced polarization is not
linear in the electric field E but instead

P = ε0

(
χ(0)E +χ(1)EE+χ(2)EEE

)
(4.1)

where ε0 is the vacuum permittivity and χ( j) the j-th order susceptibility. Silica (SiO2)
is a center-symmetric molecule and symmetry considerations will lead to the result
that the second order susceptibility is equal in electric dipole approximation to zero.
The consequence is that for example no second harmonic generation is possible in an
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optical fiber (in fact this is not true due to the higher order terms neglected in first
approximation). The third order term is responsible instead for FWM, third harmonic
generation, nonlinear refraction. This E dependence of the polarizability reflects on a
power dependence of the refractive index of the fiber, inducing a possible intermodu-
lation between different optical signals. If two different signals with frequencies ν1,ν2

are then launched into the fiber, the beatnote of these two signals modulates the re-
fractive index with a frequency (ν2-ν1). Through this modulation a third signal at the
frequency ν1 will develop sidebands at the frequencies ν1+(ν1−ν2) and ν1− (ν1−ν2).
The situation in fact is much more complex and every possible combination of the sin-
gle frequencies can combine with each other. In a quantum representation we can say
that different photons annihilate to generate new ones at different wavelengths. Dif-
ferent kinds of FWM are possible. The case in which three photons annihilate to give
rise to a new one, is called “totally degenerate” FWM; the case of two photons with
the same energy that combines to give rise to two photons different in energy, is called
“partially degenerate” FWM. “Non-degenerate” FWM is present when all the frequen-
cies are different to each other. It is important to note that as mentioned above not only
energy conservation has to be satisfied in the FWM process, but even phase matching
conditions. For this reason FWM is referred to as a “parametric process”.

In this chapter we will concentrate mainly on ”partially degenerate” FWM. In this
process two pump’s photons are absorbed by the fiber and two photons are created;
one photon at a higher frequency than the pump and one at a lower frequency. Usually
low frequency waves are referred as Stokes waves. High frequency wave as Anti-
Stokes. As mentioned in the former paragraph, parametric processes are stronger
when the process is phase-matched, i.e. when momentum conservation is valid. It
follows that due to the dispersion of the refractive index, FWM is not always present
but only when the following relation holds:

∆k =
2npωp

c
− nSωS

c
+

naSωaS

c
= 0; (4.2)

where the ω’s refer to the frequencies of the waves (pump, Stokes and Anti-Stokes)
and the n’s to the different values at each wavelength of the effective refractive index.
For the case of an optical fiber, the effective refractive index of the different waves (and
consequently ∆k) is determined by three factors.

∆k = ∆kM +∆kW +∆kNL (4.3)
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The first term ∆kM is the dispersion of the bulk medium of which the guide is made.
The second is due to the dispersive characteristic of the waveguide itself. The third one
represents the mismatch due to nonlinear effects. The single terms can be written as
follows

∆kM = (nSωS+naSωaS−2nPωP)/c (4.4)

∆kW = (∆nSωS+∆naSωaS−2∆nPωP)/c (4.5)

∆kNL = 2Pγ (4.6)

where the new n’s are equal to the material refractive index n with added the change
due to waveguiding. We can immediately note that phase matching in SMF is possible
only if at least one of this term is negative. Some considerations are worth to be done.
As the pump wavelength changes from below λ0 to beyond it, the phase mismatch
vector (the material one) changes sign from positive to negative. The phase matching
(total phase mismatch vector equal to zero) will so occur at longer pump wavelengths
because the waveguide contribution causes the shift of the zero crossing point. As
the core diameter increases the waveguide contribution changes sign from positive to
negative, making phase matching conditions dependent from the core size. Since for
a SMF both the material and the waveguide dispersions contribute to phase mismatch
the resultant phase matching point depends on

• the dopant

• the doping concentration

• the refractive index difference

• the core diameter of the fiber

Note now that the material contribution ∆kM can be expressed conveniently as a func-
tion of the frequency shift between the pump and the Stokes (or anti-Stokes) sideband
defined in the following way:

Ω = ωP−ωS = ωaS−ωP (4.7)

To do this we make a Taylor expansion of the propagation constant (momentum) about
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the carrier frequency ω0

β(ω) = k(ω) = n(ω)
ω
c

= β0 +(ω−ω0)β1 +
1
2

(ω−ω0)
2β2 +

1
6

(ω−ω0)
3β3 + .... (4.8)

where
βn =

(
dnβ
dωn

)
Now the dispersion parameter D is defined as

D =
dβ1

dλ
=

d
dλ

(
dk
dω

)
=−2πc

nλ2

d2k
dω2 (4.9)

Let substitute the last expression for the dispersion parameter D into the former equa-
tion. Moreover we are interested in the case such that λB < λP and two photons from
the pump generate one photon at the probe wavelength and another one at the Stokes
side (λS > λP) The phase mismatch ∆k will result to be

∆k = kB +kS−2kP

Substituting the values for k found before (i.e. the Taylor expansion around the pump
wavelength) and defining Ω = (ωS−ωP) we got

∆k =−nλ2
P

2πc
Ω2D(λP) (4.10)

Now making some calculations and considering that λS = λP +∆ and λB = λP−Σ (it is
easy to show that Σ ≈ ∆) we can easily find that

∆k =−2πcD(λP)
∆2

λ2
P

So we can say that the material dispersion

∆kM = β2Ω2

where β2 is the GVD.
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The material dispersion can be rewritten in a more convenient way

∆kM =
λ2

2πc
DΩ2

Now note that this relation is true only when we are not too near the lambda zero
dispersion. In fact in this case the formula is no more valid and higher terms in the
expansion have to be considered (note that D is zero!). Another important considera-
tion is the following. If we act on the dispersion we can change the value and the sign
of the material dispersion, achieving phase matching. We can now consider what is
happening for the case of SMF (the one we are considering in this chapter). For this
fibers the waveguide dispersion is roughly zero and phase matching can consequently
be achieved in different ways. If the pump wavelenght is greater than the zero disper-
sion wavelength λ0 the material dispersion becomes negative. So phase matching is
achieved when the pump wavelenght is near λ0. Phase matching can be obtained too,
acting on the nonlinear term through the power of the pump.

4.1.2 Phase matching condition near λ0

We saw in the precedent paragraph when phase matching conditions are allowed. We
can now distinguish two different situation depending if we are with the pump wave
in a region in which the dispersion D is equal to zero or instead if we are near that one.
Depending on that, the phase matching conditions change quite a lot and the FWM
gain too. Let consider first the case in which the pump is in a region in which the dis-
persion D is different from zero (but near that one). Moreover we suppose to work in
the normal region of the dispersion (D>0). In the anomalous region things are quite
different and the modulation instability plays an important role making impossible to
retrieve any information about the chromatic dispersion profile. So under the condi-
tion that the fiber has a normal dispersion, the conversion efficiency η which is defined
as the ratio of the converted power to the input signal power, is equal to

η = γPPL

[
sin(gL)

gL

]2

with
g2 =

1
2

[∆k(∆k+4γPP)]
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where PP is the pump power, L is the length of the fiber under test, γ is the nonlinear
factor equal to

γ =
n2

Ae f f

2π
λP

and λP is the pump wavelength. Considering the equation we found before for the
phase mismatch ∆k, t will follow that the conversion efficiency depends on the follow-
ing parameters

• the pump power

• the phase matching condition

• the nonlinear coefficient γ

Things goes different when the dispersion is equal to zero, i.e. when the wavelength
of the pump is equal to λ0.For this case we have to consider higher order terms in
the expansion of the propagation constant, considering that the first derivative of the
dispersion parameter D is different from zero. With some calculations (see paragraph
before) it’s possible to show that the phase mismatch ∆k is equal to [41]:

∆k =−πλ4

c2

dD
dλ

2
Ω2

λ2
S

(λ0−λP)Ω2

4.1.3 Photon pair generation and experimental setup

The process we will exploit in order to produce photon pairs in optical fibers is partially
degenerated FWM. That means we use two photons at the pump wavelength to create
photons at two new frequencies ωS (called Stokes photon; the reason is that this photon
is lower in energy with respect to the pump) and ωaS

2ωP = ωB +ωS

There is no presence of a probe that will stimulate the process to create one photon at
that wavelength and the other at the Stokes or Anti-Stokes. So the FWM will still be
present of course, but distributed on the entire spectra. Even if there is some filtering
some amplified stimulated emission (ASE) will be present in the FUT stimulating the
FWM on the ASE region of the entire available spectrum. So two symmetric sidebands
around the pump wavelength should be present arising from the FWM process. The
setup for the experiment is shown in Fig. 4.1.
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Figure 4.1: DFB Distributed feedback laser; VA variable attenuator; FBG fiber bragg grating; FUT fiber
under test; TF tunable filter; TDC time to digital converter.
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Light coming from a DFB laser working in CW mode, is filtered twice by way of
the fiber bragg gratings FBG1 and FBG2 tuned on the lasing wavelength in order to
remove any background signal from the laser itself. Light is then injected into the FUT
along which FWM photons are created. At the exit of the FUT the laser line is rejected
by the filters FBG3 and FBG4 (80 dB attenuation) because the generated signal is lower
than the laser line. After that the photons are splitted in a ration 50/50 at the coupler
and two tunable gratings TF (40 dB attenuation) are tuned symmetrically around the
laser line. Detection events are collected at the photodiode (InGaAs photodetectors;
see Section 5.1) and coincidences between the events are made using a time to digital
converter.

The measurements were made in the following way. First of all intensity as a func-
tion of wavelength was determined at the exit of the FUT for different fibers. This
in order to see that the arising bands were symmetrically located and the signal was
higher than the noise. Different spectra are shown in Fig. 4.2 for fibers having different
λ0 and different lengths. The spectra for a high non linear fiber (length 1 km) with λ0

at the same value of the laser line (λ = 1549.4 nm) is shown in Fig. 4.3. We can clearly
distinguish two sidebands located at higher and lower wavelengths compared to the
laser line. In the inset of Fig. 4.3 is shown the correlation on the detection of the pho-
tons at the two photodiodes. The two tunable gratings are tuned at higher and lower
wavelengths symmetrically around the laser line. The correlation spectra shown in the
inset was made at the wavelengths evidenced with the arrows in the figure. Correla-
tion measurements were made for different wavelengths and no correlation was ever
found suggesting that the bands have their origin in different phenomena than FWM.
Measurements as a function of length were made too and even for shorter lengths (me-
ters) no correlation was ever observed.

4.1.4 Conclusion

In conclusion no photon pairs were generated. This could be done to the low amount
of power injected into the FUT and to the poor quality of the DFB laser. At the same
time luminescence due to the glass impurities is covering the signal. Improvements
could be obtained with a Er ring laser (higher signal to noise ration and higher power)
and using short lengths of fibers (like photonic crystal fibers).
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Figure 4.2: Spectra of the created photons. The central peak is due to the pump laser. On the right is
indicated the value of λ0.
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Figure 4.3: Spectra of the created photons. The central peak is due to the pump laser. For these
photons,as seen in the inset of the figure, no time correlations have been observed, indicating that they
are probably created by another process than FWM (e.g. fluorescence in the fiber).

4.2 Distributed Measurements of CD in DSF fibers

In this section we report on distributed measurements of chromatic dispersion along
dispersion shifted fibers with different values of polarization mode dispersion and
coupling lenght, by way of an OTDR-like method based on four wave mixing.

4.2.1 Introduction

The implementation of Erbium-doped fiber amplifiers allows for high-bit rate trans-
mission over transoceanic distances. At the same time, the technique of wavelength
division multiplexing (WDM) is used to increase the transmission rate, leading to an
important amount of power inside the fiber. Because of the long distances and high
powers, optical nonlinearities start to play a significant role. In dispersion shifted fibers
(DSF) four wave mixing whose efficiency depends on the chromatic dispersion profile,
leads to transmission impairments. From here the necessity to have a technique that
can allow to map the longitudinal distribution of chromatic dispersion along a fiber.
The method proposed by Mollenauer et al.[29, 30] and based on four wave mixing, is a
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convenient approach for the measurement of chromatic dispersion maps in DSF fibers.
In this work we show that when the coupling length h is relatively large (as is typically
the case for most older installed DSF cables) the method presents severe limits. We
present a comparison between DSF fiber with different values of PMD and coupling
length and a model is discussed in order to explain the observed phenomena.

4.2.2 Theory

The measurement method consists in launching two optical beams at frequencies ω1

and ω2 (ω1 < ω2) along a fiber. Due to the nonlinearity of the fiber, the two waves
will interact by way of FWM generating two new signals (Stokes and Anti-Stokes) at
frequencies ωS = 2ω1 - ω2 and ωAS = 2ω2 - ω1. Being a parametric process, both energy
conservation and phase matching conditions must be satisfied. Taking into account the
dispersion of the fiber, it is possible to show that the phase mismatch ∆k between the
two waves (we set the pump power equal to twice the probe power P2 = 2P1, i.e. the
nonlinear contribution to the phase mismatch is equal to zero) is given by

∆k1 = D(λ1)c2π
(

∆λ
λ1

)2

(4.11)

This phase mismatch is manifest as a spatial intensity oscillation of period λSp in both
the Stokes and Anti-Stokes waves, that can be observed as a temporal oscillation with
frequency νt in the intensity of the Rayleigh backscattered light. This oscillations is due
to the phase mismatch between the different photons, and the frequency in oscillation
is given by

FS =
1

ΛS
=

∆k
2π

= cD(λ1)
(

∆
λ

)2

(4.12)

So if we measure the spatial frequency we are measuring in effect D(λ1) with a spatial
resolution given by ΛS. Of course this oscillation can not be observed in forward direc-
tion but only in backscattering. In fact here the signal will fluctuate in intensity with a
temporal frequency related to the spatial one by

FI (t) =
c

2n
FS(z) (4.13)

Note that the spatial frequency is a function of the position along the fiber due to pos-
sible changes in the D parameter. This spatial frequency will reflect in a temporal
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dependence of the temporal frequency FI (t). So the frequency in the intensity modu-
lation at time t = 2nz/c will give us information about the D at the position z in the
fiber.

So finally combining the equation we have that the dispersion parameter D is equal
to

D(λ1,z) =
2n
c2

(
λ1

∆

)2

FI

(
t = z

2n
c

)
(4.14)

The estimated power can be calculated equal to

PS(z) = 8

(
λ1

Dc∆2

)2( n2

Ae f f
P1

)2

P2sin2
(

∆kz
2

)
R∆ze(−4αz) (4.15)

where z is the length occupied by a pulse, and R is the backscattering coefficient. Re-
garding the nonlinear contribution to the phase mismatch this is usually a fraction of
the linear one. In any case keeping the power of the pump twice the one of the probe
is easy to show that the nonlinear mismatch is always equal to zero.

So measuring the temporal frequency allows one to obtain the value of the disper-
sion D(λ1,z) at the pump wavelength λ1 and at the position z. Now, it is well known
that single-mode communication fibers have residual birefringence and that the orien-
tation and the magnitude of the birefringence is randomly distributed along the fibers.
This distribution is characterized by the PMD and depends on two parameters: on the
(mean) local birefringence B and on the coupling length h that gives the distance after
which a considerable amount of power has coupled into the other polarization mode.
If the fiber under test (FUT) does not present a birefringent axis (low values of PMD
and coupling length), the pump and probe will travel together remaining parallel to
each other for the entire length of the fiber. It follows that the positions along the fiber
where the condition of phase matching is satisfied are independent of the entering state
of polarization of the pump and of the probe. In the presence of relative large values
of PMD the evolution of the SOP for pump and probe is given by [42]

< Sout
1 Sout

2 >= Sin
1 Sin

2 exp

(
−∆ω23π

8
< ∆τ >2

3

)
(4.16)

For what concerns the efficiency η of the FWM process, this is given by

η =
1
2

(1+S1S2) (4.17)
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where S1 and S2 represents the Stokes vectors of the state of polarization (SOP) of the
pump and probe respectively. For the case of low values of coupling length, even if
the PMD results quite high, the net effect consist in a different evolution of pump and
probe along the fiber. But due to the short autocorrelation length (i.e. high polariza-
tion scrambling) the contribution to the phase mismatch due to the waveguide term is
negligible and the phase mismatch will still result to be equal to Eq. (4.11). Only the
efficiency η, will change making in some cases difficult to find the position of zero mis-
match. But the position will result to be only slightly dependent on the entry state of
polarization. However, the situation becomes more complicated, when there are large
values of coupling length along the fiber. The asimmetry in the fiber and the concomi-
tant different evolution for pump and probe due to the PMD (Eq. (4.16)) will give rise
to polarization dependent effects. In fact depending on the SOP entry angle the two
waves will travel along different paths but in this case due to the long coupling length
the scrambling is not high enough to make statistically equal the presence of both of
them along the birefringence axis with the waveguide phase matching term resulting
different from zero. The situation is similar to what is happening in a PM fiber in which
two birefringent axis are defined. If one of the two waves will match one of the two
axis will travel along it for the entire length of the fiber acquiring a certain phase. The
other instead will start to rotate. So the phase matching condition will result to be a
function of the entry state of polarization. This will reflect in a SOP dependence of the
dispersion maps obtained for this kind of fibers.

4.2.3 Experiment

The experimental setup for the measurements is shown in Fig. 4.4. The light source
consists of two tunable distributed feedback lasers (DFB) in cw mode. The SOP of the
two waves is controlled via two polarization controllers (PC1, PC2), and made equal
in order to maximize FWM (Eq. (4.17)). The two waves are then amplified by a SOA
modulated with a frequency of 4 kHz and a pulse width of 30 nsec and then amplified
again by an EDFA. Typical values in the range 150-1500 mW are used. The SOP of both
the waves is then controlled at the same time by way of a polarization controller (PC3)
and the light is then launched into the fiber under test (FUT). The circulator sends the
two pulses into the FUT, and collects the Rayleigh backscattered signal to an OTDR
after passing through a tunable filter (40 dB attenuation @ 2 nm). The oscillation in the
power at the Stokes (or Anti-Stokes) wavelength are monitored in backscattering with
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Figure 4.4: Experimental setup.
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Fiber Length (m) λ0 (nm) Coupling Length (m) PMD (ps/
√

km)

NIST 9700 1547.8 0.53 0.02
AC-2 7400 1545 0.65 0.19

Table 4.1: Parameters for the different fibers.

an OTDR and the dispersion maps are elaborated by a personal computer.

4.2.4 Results

We made measurements on different fibers. The data for two of them are shown in
Table 4.1.

First, we map the chromatic dispersion for two different DSF fibers, one with a
small and one with a large polarization coupling length h (determined from (polar-
ization sensitive) Optical Frequency Domain Reflectometer traces). In both fibers, the
overall PMD is small (¡0.2 ps/km). Fig. 4.5 shows the Stokes signal power for the low
coupling length fiber for different input SOPs into the FUT (pump and seed input po-
larizations are kept identical). No significant dependence of the results on the input
polarization is expected for such a fiber, as the pump and seed signals have no time to
acquire significantly different phases due to the frequent coupling among the fast and
slow axes. Indeed, the figure demonstrates that only small changes in the amplitudes,
but not in the locations of the Stokes signal maxima are obtained. For completeness,
inset (a) shows the chromatic dispersion map as obtained from entering the fiber from
both ends (one of the profiles is inverted), demonstrating the good reproducibility and
accuracy of the results. Inset (b) gives the overall dispersion at different wavelengths,
where the open circles were obtained from summing up the FWM dispersion map,
and the bold line from an alternative method. Good agreement between the two meth-
ods can be observed. Fig. 4.6 shows the results for the long coupling length fiber. As
can be seen, the maxima locations of the Stokes signal vary strongly due to the addi-
tional phase from PMD, which depends on the input polarization states. In fact, the
chromatic dispersion map can no longer be estimated from a single trace alone, as the
frequency at a given location depends on the (arbitrary) relative polarization states at
that location for that input SOP. To remove this arbitrary component, different profiles,
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Figure 4.5: Signal intensity profile for the fiber NIST. In the inset is shown the chromatic dispersion
profile taken at both FUT entry and the integrated value of the chromatic dispersion.

each corresponding to a different input SOP, have to be taken. For a given location, the
mean value of GVD should then be retained. Note that averaging over all the possible
SOP during an acquisition (by using a polarization scrambler, bold line in the inset of
Fig.3) will not give a meaningful result, as it simply corresponds to a sum of the dif-
ferent individual traces giving -due to arbitrary positions of the different maxima - a
curve that is basically flat.

4.2.5 Conclusions

In conclusion in this section we have shown that mapping of chromatic dispersion in
DCF fibers, is strongly affected by the coupling length value present in them. The pos-
sibility to obtain significative mapping still exist for fibers of this kind and is allowed
by way of collecting different signal profiles at different entry SOP.
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Figure 4.6: Signal intensity profile for the fiber AC-2. In the inset is shown the chromatic dispersion
profile taken at both FUT entry.
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4.3 Distributed Measurements of n2/Ae f f in DSF fibers

In this section we report on distributed measurements of nonlinear coefficient n2/Ae f f along
dispersion shifted fiber by way of an OTDR-like method based on four wave mixing
effect.

4.3.1 Introduction

Because of the long distances and high powers reached nowadays in optical fibers, op-
tical nonlinearities due to changes in the refractive index (optical Kerr effect) start to
play a significant role. Among them, self-phase modulation (SPM), cross-phase modu-
lation (XPM), and four-wave mixing (FWM) are the most important. The magnitudes
of these effects depend on the ratio n2/Ae f f , where n2 is the nonlinear refractive in-
dex of the fiber and Ae f f the effective area of the lightmode. It is therefore important
to have a simple and accurate method for the determination of this ratio. Different
methods, based on SPM or XPM phase shift detection using interferometric [23] and
non-interferometric [5] schemes have been proposed (see Section 2). But all these mea-
surements techniques give only the integrated value of the nonlinear coefficient over
the entire length of the fiber under test (FUT). The only way to obtain a map of the
n2/Ae f f over the entire fiber length consist in performing a destructive fiber-cutting
measurement. In this section, we propose a new method based on an OTDR-like tech-
nique firstly proposed by Mollenauer et al. [29, 31] to perform distributed measure-
ments of chromatic dispersion along a fiber. The method allow us to obtain longitudi-
nal mapping of the nonlinear coefficient along a 10 km DSF fiber.

4.3.2 Theory

When two optical beams at frequencies ω1 and ω2 (ω1 ¡ ω2) propagate along a fiber,
due to the nonlinearity of the fiber, they interact by way of FWM generating two new
signals (Stokes and Anti-Stokes) at frequencies ωS and ωAS.

ωS = 2ω1−ω2 ωAS= 2ω2−ω1

The waves at ωS , ω1 , and ω2 are called idler, pump, and signal respectively. Being a
parametric process, it is required not only energy conservation but even phase match-
ing conditions have to be satisfied. Taking into account both the dispersion of the fiber
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and the nonlinear contribution to the phase matching condition, it is possible to show
that the phase mismatch ∆k between the two waves is given by

∆k = ∆L +∆NL = Dc2π
(

∆λ
λ

)2

+ γ(2P1−P2) (4.18)

This phase mismatch will reflects itself in a spatial intensity oscillation with period λSp

in both the Stokes and Anti-Stokes waves, that can be observed as a temporal oscilla-
tion with frequency nt in the intensity of the Rayleigh backscattered light [43]

νt =
c

2n
1

λSp
=

c
2n

∆k
2π

= νL +νNL =
c

2n
Dc

(
∆λ
λ

)2

+
cγ

4nπ
(2P1−P2) (4.19)

If P2 = 2P1 the nonlinear term is vanishing and a measurement of the local frequency
will allow to have information on the local value of the dispersion all along the fiber
length. Once retrieved a map for the chromatic dispersion D(z,l) and considering a
ratio for the pump and probe power different from 2, we can in principle retrieve in-
formations on the local value of the g(z) parameter (i.e. n2/Ae f f ). Unfortunately local
variations due to the coupling length will not allow to obtain good and reproducible
map of the nonlinear coefficient. An alternative way, that makes the measurements
much more significative, consist in performing two different measurements keeping
the ratio P1/P2 constant but attenuating it of the same factor a the power of both pump
and probe at the entry of the FUT. It follows that the difference between the temporal
frequency for the two measurements is indipendent of the chromatic dispersion (the
linear term that appears in Eq. (4.19) is equal for both the cases, so it cancels out), but
contains instead a dependence in γ.

∆νt = νt(α = 1)−νt(α = α) =
cγ

4nπ
(2P1−P2)

1−α
α

(4.20)

That allows us to obtain a map of the nonlinear coefficient along the FUT. To note that
typical variations of the n along the fiber, will not contribute significatively to the ∆νt

term.
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4.4 Experimental

The experimental setup for the measurements is shown in Fig. 4.7. The light source
consists of two tunable distributed feedback lasers (DFB) in cw mode. The state of
polarization of the two waves is controlled by way of a polarization controller and
monitored by a polarimeter, and made equal in order to maximize FWM process along
the FUT. The two waves are then amplified by a SOA modulated with a frequency of
4 kHz and a pulse width of 30 nsec and then amplified again by an EDFA. Typical
values in the range 150-1500 mW are used. The circulator sends the two pulses into the
FUT, and collects the Rayleigh backscattered signal to an OTDR after passing through
a tunable filter (40 dB attenuation @ 2 nm). The oscillation in the power at the Stokes
(or Anti-Stokes) wavelength are monitored in backscattering with an OTDR and the
dispersion maps are elaborated by a personal computer. The measurements were then
performed in the following way: pump and probe were tuned at different wavelengths
(λ2 = 1541.3 nm, lambda1 = 1535.0 nm) and the power was setted at 1150 mW for both
of them (P1 = P2) and at 115 mW for the attenuated measurement (α=10).

4.4.1 Results

A typical signal profile for the fiber under test is shown in Fig. 4.8.
In the inset is shown the CD profile at 1541.3 nm. Measurements at the two different

powers are reported in Fig. 4.9. In the inset is shown a simulation using Ae f f = 39 µm2,
n2 = 2.6 10−10W−1 for the two different powers. The data shown in the figure and in
the inset match quite good. From the experimental values using Eq. (4.20) it is possible
to determine the longitudinal distribution of the nonlinear coefficient n2/Ae f f . This
is shown in the inset of Fig. 4.9. The fluctuations are due to the inaccuracy in the
determination of the position of the signal peaks. This can be improved averaging the
total number of measurements and using a fitting algorithm.

4.4.2 Conclusion

In this section we reported on distributed measurements of nonlinear coefficient
n2/Ae f f along dispersion shifted fiber by way of an OTDR-like method based on four
wave mixing effect.
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Figure 4.8: A typical signal profile for the fiber under test.
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Figure 4.9: Map of the nonlinear coefficient for the short coupling length fiber.



Chapter 5

Different contributions

5.1 Photon Counting Near Field Scanning Optical Mi-

croscopy at 1.55 µm

In this section we present a a new system combining near-field scanning optical mi-
croscopy (NSOM) with single photon detection operating at the wavelength of 1.55
µm. The microscope was used in order to image the splice region between a standard
telecom and an Erbium doped fiber. The excellent sensitivity also allowed to detect
the Rayleigh scattered light of a standard fiber coming out laterally through the fiber
cladding.

5.1.1 Introduction

Near-field scanning optical microscopy (NSOM) allows to obtain spatial resolutions
below the classical diffraction limit [44]. Over the last years, this intriguing possibility
has been exploited for numerous applications [44, 45, 46, 47, 48, 49, 50, 51].

In order to increase the sensitivity of the NSOM, photon counting detectors are
employed. So far, the use of silicon avalanche photodiodes (APD) operated in the so
called Geiger mode has been demonstrated. It is well known that these silicon APDs
have very good performances [52]: quantum efficiencies of about 60%, dark count rates
below 100 counts per second, and a sub nanosecond timing resolution. But silicon is
not sensitive in the near infrared, and other detector materials have to be employed for
photon counting in that important wavelength region. Due to their sensitivity from 0.7
to 1.8 µm, Ge APD are potential candidates. However, in order to have a reasonably
low dark count rate, these detectors must be cooled to 77 K, reducing their cut-off
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wavelength to below 1.45 µm. This problematic is absent in InGaAs/InP photodiodes.
Although this 1.55 µm photon counters have been used for several years in quantum
optics experiments (e.g. quantum cryptography [53]), they are not yet exploited for
NSOM. Using this technique, we demonstrate in this section a photon counting NSOM
operating at 1.55 µm. To illustrate its functionality we give some examples relevant for
telecommunications. Note however that other interesting applications can be found in
the biological field.

The section is structured as follows. In Subsection 5.1.2 we describe the setup of
our photon counting NSOM with emphasis on the photon counting detection scheme
at 1.55 µm. In Subsection 5.1.3 we first test our NSOM by measuring the optical mode
field out of a single mode fiber and by comparing it with a standard measurement
method. We then monitor the splice between an Erbium doped and a standard single
mode fiber, from which an upper limit for the thermal diffusion length was found. The
excellent sensitivity of our NSOM even allowed to detect Rayleigh light scattered out
laterally from a piece of standard single mode fiber.

5.1.2 Description of the 1550 nm photon-counting NSOM

The set-up consists of two main parts: the NSOM apparatus and the detection scheme.
The NSOM system is home built and consists of a Physik Instrumente piezo servo-

controlled xyz-scanner (100*100*10 µm) mounted on a Nikon TE300 inverted micro-
scope usually used in transmission mode to characterize the fluorescence of biological
samples. For the applications discussed in this section, the light coming out from the
fiber sample under test is collected by a tapered optical fiber obtained by chemical
etching so that the aperture diameter is below 100 nm. To ensure a constant, small tip-
sample distance during the scan, we use the shear-force detection technique originally
proposed by Karrai et al. [54]. It is based on a mechanically excited tuning fork of
well-defined resonant frequency. The optical fiber tip glued to one arm of the tuning
fork protrudes less than 1 mm and vibrates parallel to the sample surface with an os-
cillation amplitude of about 10 nm. Approaching the sample surface, the decrease of
the piezoelectric signal amplitude is used to maintain the tip-sample distance at about
5 nm with an electronic feedback loop controlling the z-direction of the scanner.

The heart-piece of the detection scheme is obviously the 1.55 µm photon-counting
detector. Due to efficiency and signal-to-noise issues, InGaAs/InP Avalanche Photodi-
odes (APD) are the only viable candidates for photon counting at 1.55 µm today [55].
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In the following, we will therefore concentrate on this type of detectors. Before en-
tering the details, let us briefly recapitulate the working principle of photon-counting.
If an APD is biased above the breakdown voltage (Geiger mode), every time a sin-
gle photon is absorbed by the photodiode, it will trigger an avalanche generating a
macroscopic current pulse. The recording of this current pulse with a suitable elec-
tronic discriminator circuit indicates the presence of a photon. To link the recorded
photon counts to different power levels, many ’real’ events have to be recorded so that
erroneous (i.e. noise) counts don’t falsify the measurement. Further, the probability to
detect a single photon in a given time interval has to be much smaller than 1, other-
wise the corresponding ’saturation’ of the detector corrupts the obtained information
After a detection, the APD must be re-initialized to rapidly allow the measurement of
other photons arriving. This is done by quenching the avalanche, which can be done
actively or passively [56]. If -as in our experiments- the time of arrival of the photons
on the APD is known, one typically uses the so called gated mode. Here, the APD
bias voltage is raised above its breakdown voltage only during a short gate period,
and consequently only during this time interval photons can be measured. At all other
times, the APD is operated in standard mode with a reverse bias voltage slightly below
the breakdown, inhibiting avalanche formation. The main advantage of gated mode
operation is that the number of erroneous counts is very low [55]. To further limit the
noise, relatively low repetition rates (≤ MHz) and durations (nsec) for the gate and
cooling of the APD (200-300 K) are typically employed.

The choice of the APD to be used as a detector in our setup was a tedious process,
as detection efficiency and dark count probability vary from model to model and de-
pend on parameters as gate voltage or APD temperature. Different InGaAs/InP APD
from different companies were therefore characterized [57] in order to find the best
performances. These results are summarized in Fig. 5.1, where the dark count proba-
bility is given as a function of the detection efficiency at different temperatures and for
different InGaAs/InP APD’s. The figure demonstrates that the quantum efficiency can
be as large as 30% with a noise probability of 10−2 to 10−4 counts per gate of 2.4 ns.
The APD we finally used for the NSOM is the one from EG&G (see Fig. 5.1), cooled to
-40o C. The detection efficiency was set to 15%, leading to a noise probability of 10−3

counts per 2.4 ns. The gate repetition rate employed in our experiments is 10 kHz, with
a gate duration of 40 ns. The number of dark counts was found to be below 250 Hz.
From these numbers a sensitivity of 10−2 photon per gate can be estimated. Note that
the gate can be reduced to as little as 180 ps [55], allowing for time resolved studies.
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Figure 5.1: Dark count probability as a function of the detection efficiency at 1.55 µm for different
InGaAs/InP APD temperatures and models [from Ref.[57]].

The set-up of the driving electronics for the APD is shown schematically in Fig. 5.2.
The pulse generator emits at 10 kHz and acts as the timebase of the system. These
pulses trigger on one hand the optical source used for the sampling illumination, and
on the other hand the voltage generator producing the gate pulse of 4V/40ns. The
detection window can be adjusted with respect to the arrival of the photons via a delay
generator inserted in front of the voltage generator. In addition to the gate pulse, a
continuous voltage offset is put on the APD to optimize both its biasing outside the
detection window and the level of the gate voltage. The avalanche signal is detected
and registered with the use of discriminator electronics and a counter. A picture of the
InGaAs/InP APD module used for the photon-counting NSOM is shown in Fig. 5.3.
It includes the Peltier cooling and the detection electronics. The optical source we
use in our experiments was a distributed feedback laser (DFB) emitting at 1.559 µm.
The pulse duration was set to 100 ns and therefore exceeds the gate duration of 40
ns, creating a quasi-cw illumination. To obtain sufficiently high power levels for the
sample illumination, the pulses were consecutively amplified by an Erbium doped
fiber amplifier (EDFA) with a small signal gain of 40 dB and a saturated output power
of 23 dBm.
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Figure 5.2: Experimental setup. The delay generator is used to trigger the pulsed laser and the voltage
generator, such that the gating of the APD coincides with the photons arrival time.
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Figure 5.3: Picture of the Peltier cooled InGaAs/InP APD module used for the photon counting
NSOM.
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5.1.3 Two measurement examples

Optical fiber mode field

As a first test of the 1.55 µm photon-counting NSOM, the mode-field of a single-mode
optical fiber (SMF) was measured. Note that this is not a primary application for
photon-counting NSOM, as this type of measurement can usually be performed by
standard means as well, but rather serves to check the validity of the obtained results.

The measured sample consists of a SMF with a typical diameter of the guiding
region (core) of 9 µm. The illumination source is coupled into the SMF with a peak
power set to +10dBm. The transverse distribution of the guided light (mode-field) is
then measured by performing a near-field scan of the cleaved output surface of the
SMF. In order to avoid complete saturation of our high sensitivity photon-counting
detection scheme, a loss of 70dB has to be inserted in front of the APD. The result of
this scan is shown in Fig. 5.4. As can be seen, the mode is of quite perfect circularity, as
expected for a SMF. For better illustration, we choose a slice through the center, along
which the measured near-field intensity is plotted (Fig. 5.4). In accordance with the
NSOM tip aperture, the spatial resolution is about 100 nm. In order to validate our
NSOM measure, a comparative measurement of the mode field using a commercial
device (NR 9000 [34]) with specified precision and accuracy was performed. As can be
seen in Fig. 5.5, the mode field measured with the NR9000 (bold line) agrees well with
our NSOM measurement (open circles), typically to within 10%. From both set of data,
a mode-field diameter of 10.0 µm is calculated.

Splice between an Erbium doped fiber and a SMF

In the second measurement example, the splice between an Erbium doped fiber and
a SMF is analyzed. It is interesting to look in detail at such a splice as the Erbium
ions (and other core dopants like Germanium) are known to thermally diffuse into
the cladding material during the splicing process [58]. Control of this diffusion by
variation of the splice parameters (electric arc power and duration) allow to better
match the mode field in the Erbium doped fiber to the one of the SMF, thereby reducing
the transmission loss of the splice.

Our sample consists of a standard SMF spliced to an Erbium doped fiber with a
doping concentration of 2000 ppm. The splice region was stripped by mechanically
removing the protective plastic coating before the splicing. For the measurements, the
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NSOM tip was brought close to the cladding surface, and the NSOM was operated
in collecting mode to image the light scattered out sidewards of the test fibers (see
Fig. 5.6). Along with the optical measurements, a topographical scan of the splice
region was performed. This both allows to correctly locate the tip with respect to the
fiber sample and to monitor eventual defects in the fiber surface. A typical result of
such a topographical scan is shown in Fig. 5.7. The fiber was aligned along the y axis,
and the xyz stage of the NSOM allowed for a scan of about 70 µm along x and y axes
(top). As the figure demonstrates, the splice topography is completely homogeneous
-both the SMF and the Er doped fiber have cladding diameters of 125 µm- and no
surface damages or irregularities were detected. Consequently, we can be sure that
the optical information is not deteriorated by irregular scattering or diffraction from
surface defects.

For the optical scan, the 1.55 µm light source was coupled into the SMF with a peak
power of 2.5 W. The result for the splice region is shown in Fig. 5.8. The amount of light
collected from the Erbium doped fiber (top) is clearly much larger than the one from the
SMF, as the spontaneous emission of the Er ions activated by the 1.55 µm illumination
adds to the Rayleigh scattered light. In fact, the collected light stems almost uniquely
from this luminescence, as insertion of a filter at the pump wavelength in front of
the APD did not lead to significant changes. Also, variation of the delay time of the
gate with respect to the pump pulses did not lead to apparent modifications either.
The amount of collected light is therefore constant, independently of the presence of a
pump pulse at the time of detection - a consequence of the long life time of the Er ions
of 1 ms. From Fig. 5.8, it can also be seen that the spatial resolution is not outstanding.
The small aperture of the employed tip of 100 nm is not suited for far-field detection. It
leads to a large field of view, which -together with the distance of the tip to the region
of interest (about 70 µm)- is the cause for the observed resolution exceeding 60 µm.
Moreover, the NSOM tip was not coated, allowing photons to penetrate the tip from
the side. This might explain the multiple images apparent in Fig. 5.8 along the x axis,
and the fact that the maximum power is not detected in the center of the fiber.

We therefore replaced the NSOM tip with a regular, non-tapered fiber with a small
mode-field diameter of 5.5 µm. From the numerical aperture of 0.26, a resolution of
40 µm is predicted at the core region of the fiber sample. The corresponding scan is
shown in Fig. 5.9. As can be seen, the multiple image structure is now absent, and the
collected light power peaks in the center. The observed width of the luminescence is
in good agreement with the one predicted from the calculated spatial resolution. The
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transition region between the Er doped and the SMF fiber is smeared out by the same
effect. Therefore, one can only conclude from Fig. 5.9 that the Er diffusion length was
inferior to 40 µm.

To get more detailed information, a tip with better collimation (e.g. a fiber with a
grin lens) could be used to further optimize the spatial resolution. Work in this direc-
tion is in progress.

5.1.4 Conclusion

In conclusion in this section we have presented a new system that combines near-field
scanning optical microscopy (NSOM) with single photon counting at the wavelength
of 1.55 µm. The quantum efficiency of the APD’s operating at a temperature of 230 K is
15%. With a gating frequency of 10 kHz and 40 ns gate duration the dark count rate is
as low as 250 Hz, leading to a sensitivity of 10−2 photon per gate. The timing resolution
of the InGaAs/InP APD of better than 180 picoseconds [55] indicates the possibility to
employ the microscope for time correlated single photon counting for time resolved
measurements [59].

Promising applications of the 1.55 µm photon counting NSOM are in the field of
telecom, in high resolution photoluminescence measurements for the study of quan-
tum structures emitting at 1.55 µm, or in the investigation of biological samples. In this
chapter we monitored the splice region between an Erbium doped and a SMF fiber,
and found the thermal diffusion length to be below 40 µm.
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5.2 Distributed gain measurements in Er-doped fibers

with high resolution and accuracy using an optical

frequency domain reflectometer.

5.2.1 Introduction

We report on distributed gain measurements in Er-doped fibers. It is well known
that for critical Erbium doped fiber amplifier design, e.g. gain tilt optimization in
WDM booster amplifiers, knowledge of the gain distribution within the active fiber
can present a valuable information. Among the different techniques to evaluate the dis-
tributed gain in active fibers, the technique of optical frequency domain reflectometry
seems most promising as it is a nondestructive measurements method well matched
to the task due to its dynamic range, resolution and range. Moreover the background
ligth from ASE or residual pump light is strongly rejected due to the coherent detection
scheme employed. Using different Erbium-doped fibers with strongly varying doping
levels and confinements, we demonstrate the excellent accuracy and reproducibility of
the technique. More details can be found in the article reported in Appendix A.5.
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5.3 Analysis of the polarization evolution in a ribbon ca-

ble using high-resolution coherent OFDR.

5.3.1 Introduction

We exploit the inherent polarization dependence and good spatial resolution of optical
frequency domain reflectometry in order to measure the beatlength in a ribbon fiber.
The results obtained clearly show the different amount of polarization ordering for
inner and outer ribbon fibers due to the stress-induced birefringence from the common
outer coating. More details on the work done can be found in the article reported in
Appendix A.6.
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5.4 First and second order PMD emulator

5.4.1 Introduction

We have built a PMD emulator where the DGD and the ratio between first and sec-
ond order PMD can be set by the user. Contrary to approaches which try to mimic
a standard fiber as closely as possible, our emulator gives one (adjustable) value for
the PMD. This allow to directly determine the maximum (instantaneus) values for first
and second order PMD for a given permissible system impairment. More details on
the work done can be found in the article reported in Appendix B.10.



Appendix A

ITU Round Robin (Step-by-step
measurement procedure)

A.1 Introduction

In the following we are going to give a step by step procedure in order to build the
setup described in chapter 2. Moreover we give the exact measurement sequence and
procedure in order to make the measurements for the n2/Ae f f and how to treat the
data. This procedure was always followed for all the measurements made in particular
for the ITU Round Robin coordinated by Prof. Y. Namihira.

A.2 Components

The following is the list of the components used to make the experiment.

1. Coupler 50/50 Serial Nr. GAP 1061

2. Polarization Controller Serial Nr. GAP 1104

3. Coupler 90/10 Serial Nr. GAP 1035

4. Fiber Bragg Grating filter 3M Part. No. CS-96-6192 Serial No. 6096-3013 Fiber
Type CS-96-1914.

5. Fiber optical circulator Serial Nr. GAP 1050

6. Faraday Mirror Serial Nr. GAP 1048

7. Erbium Doped Fiber Amplifier IRE-POLUS 23 dBm Model EAD-200

8. Thermoelectric Control Unit Model 902 A

9. DFB laser Mitsubishi FU-689DF-V5M83A Nr. 982276

10. Power supply

109
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11. Stanford pulse generator Model DG535. Load High impedance. Exit AB positive.
50 Ohm load on exit AB negative. Signal at +1.90 and offset at -1.80.

12. Amplified photodetector Newport Model AD 300/AC 300 ps

13. Oscilloscope Tektronix TDS 580C

14. Fiber splicer Ericsson set on program nr. 2

15. Power meter Wandel/Goltermann Model OLP-18

16. Variable attenuator EXFO FVA 60B

17. One plastic box

In Fig. A.1 is shown the picture of the interferometer. The black points represent
the splices reported in Fig. A.3. In Fig. A.2 is shown the picture of the setup used to
make the measurements of the n2/Ae f f for the ITU Round Robin.

A.3 Characteristics of the laser and of the Bragg grating

The laser is centered at 1558.98 nm with a spectral linewidth of 20 MHz and is made to
be operated at 2.5 GHz. CW power can be as high as 10 mW.

The Bragg grating is centered at 1558.81 nm with a bandwidth of 1.63 nm and a
reflectivity of 63 dB.

A.4 Building the Setup

In Fig. A.3 is shown the setup used in order to make the measurements of the
n2/Ae f f for the ITU Round Robin. The black circles indicate the points in which a
splice was made and in which it is necessary to make measurements of power in order
to estimate the losses of our interferometer. Note that a description of the components
is not anymore necessary due to the fact that it is reported in Fig. 2.3.

First of all we have to find out how much is the power we have at the exit of the
laser . To do this we use a power meter and we measure the power at the point 1 of the
IF. Note that the laser is working in pulsed mode so the measured power is the average
power. To convert to the peak power we have to use the formula

Wavg = Wpeak· τ ·ν

where Wavg is the average power, Wpeak the peak power, τ the pulse width and ν the
repetition rate of the pulse. Now we have to make different measurements of power
changing both τ and ν such that their product is constant (i.e. the peak power). In this
way we can find out if our power meter gives consistent results. The measurement
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Figure A.1: In the figure is shown the picture of the interferometer used to make the measurements of
the n2/Ae f f for the ITU Round Robin. Black circles represent the splice points.
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Figure A.2: In the figure is shown the picture of the setup used to make the measurements of the
n2/Ae f f for the ITU Round Robin.
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of power we have made, are done with a frequency of 10kHz and a pulse width of
20 nsec. From this values we can find out what is the peak power and later calibrate
our fast photodiode. An error at this point can introduce a systematic error on all the
measurements and consequently on the n2/Ae f f values.

Now we build the setup as shown in Fig. A.3. We measure the power at 1 (exit
of an angled connector) and then we enter into the EDFA. The fiber cable connecting
the laser to the EDFA has to be fixed with tape on the table. From the EDFA we have
to clean the signal (too much ASE coming from the EDFA) so we enter the optical
circulator splicing the fiber coming out from the EDFA to the fiber at the entry of the
circulator (point 2). Here we go into the fiber Bragg grating splicing at point 3. The
reflection (i.e. the laser signal) is then measured at point 4. Here we have to measure
the peak power value. In principle it is not necessary to know how much power we
have lost in the splice and connections before, because the power at 4 is the power we
consider as the entry power of the interferometer.

Due to the fact that the laser is not exactly matched on the fiber Bragg grating we
have to tune its wavelength with the thermoelectric unit. This can be done taking the
light at point 4, splicing the fibers at a pigtailed fiber, entering the fast photodiode and
monitoring the pulse shape on the scope as a function of the set temperature on the
thermoelectric unit. The value used during the measurements is 31.5 Celsius.

After this we have to enter the first coupler (50/50). We measure the power at
points 5 and 7 and find out what are the losses and the coupling ratio of the coupler.
Then we consider arm 5/6. We have to insert here a delay line in order not to make
overlap the pulses (see chapter 2.2). We measure the power at 5 and at 6 and find the
loss of the delay line plus splice 5. Then we splice at 6 the 90 entry of the 90/10 coupler
and we measure the power at 9 and 10. Then we measure the power at 7 and 8 and we
find the loss of the polarization control and splice 7. Then we enter the 10 entry of the
90/10 coupler. We measure the power at 10 and 9. Using the information of before we
find the losses and coupling ratio of the 90/10 coupler and losses of splices 6 and 8.

Then we have to characterize the losses of the faraday mirror. To do this we splice
the FM directly at 10 without any FUT and measure the power at 13. The loss of the
FM (β′′) is equal to 1.77 dB.

The results for the interferometer once built up are the following. First of all the
losses in the arms are symmetric. Second the power at 10 is equal to 1/2.23 the power
measured at 4. From now on we never measure the power at point 4, because we
should rebuild the setup every time. But instead we measure the power at point 10
and from this we calculate the power at the entry 4. Point 13 is connectorized.

All the fibers and components have to be attached onto a robust plate in order not
to introduce any change in the polarization. Once built the setup is stable over months.

Note that the coupler’s fibers are characterized by different colors. Regarding the
50/50 coupler splice 4 at fiber A. Splice 13 at fiber B. Splice 5 at fiber C. Splice D at
fiber 7. For what concern the 90/10 coupler, splice 6 at fiber ORANGE. Splice 8 at fiber
WHITE-ORANGE. Splice 10 at fiber BLUE. Splice 9 at fiber WHITHE-BLUE.
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Figure A.3: In the figure is shown the setup used to make the measurements of the n2/Ae f f for the
ITU Round Robin. The black circles indicate the points in which is crucial to make loss measurements.

A.5 Calibration of the Photodiode

Before we have measured what is the peak power at the exit of the laser. Now we
calibrate the fast photodiode. To do this we use a variable attenuator. We measure the
power at 1 (it is connectorized). We enter the attenuator. From here we exit with a
connectorized fiber. We measure the introduced loss (loss of the connector plus loss
of the attenuator) setting the attenuation to zero. Then we check the linearity of the
variable attenuator changing the attenuation and measuring the power at the exit of
it. The chosen attenuator is very good and the displayed difference in the set power
are equal to the real ones (but not the absolute value of course). Then we enter the
photodiode and we change the attenuation. We measure on the scope the pulse profile.
We acquire the data and elaborate them on a pc. The pulse is not squared as it is
possible to see from Fig. A.4. We consider as the height of the pulse the height of it
at half width. The value we obtain is in mV. Knowing the value in dBm at the entry
of it we can find the factor that transforms the value from mV into dBm. Changing
the attenuation we can find until which value the photodiode is linear. The conversion
factor η is equal to 264.2. The linearity is valid till 500 mV. As a rule never go above
300 mV.
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Figure A.4: In the figure is shown the pulse profile as registered from the scope. The pulse is a little
irregular. The heigth of the pulse is always considered as the height at half width.

A.6 Measurements

In order to do a measurement it would be good to check with an old fiber that we will
obtain the same data as the old ones.

First of all we have to let to heat all the components. We turn on all the equipments
and we let it there with a set current on the amplifier at 320 mAmp.

Then we measure the power at point 10 (the average is ok). We splice a piece of
the FUT we want to measure. We then measure the power at point 11. We find the
coupling loss (the fibers have different diameters). This value is called β. Usually a
splice that presents itself good from a visual point of view, it is a good one. So repeat
till you reach a good uniformity along the splice length. Then remove the spliced fiber
and splice directly the FUT. Measure the power at 12 and find the attenuation of the
fiber. This value is called β′. Then the light goes to the FM and pass back into the splice
12. We assume (the fiber we used for our IF is a fiber with a large effective area) that
losses are coming only from large to small coupling. This means direction 10 to 11 or
12 to 11.

Now we have to arrange the polarization controller of the IF such that we have
maximal interference when no nonlinearity is present (see chapter 2.2). To do this we
connect 13 to the fast photodiode. We set a value low in the current on the amplifier
(typically 230 mAmp) and we adjust the polarization controller such that the middle
pulse on the scope will reach its maximum. Consider 13. Note that we do not have
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to know the losses because is the relative power that is interesting to measure here.
So we enter an attenuator and we fix an attenuation high enough to remain inside
the linearity of the photodiode. Increasing the current of the EDFA the intensity will
increase and so the amount of nonlinearity acquired. We write the value of the current
and we acquire the pulse profile on the scope. Usually take ten points till you reach an
amplification such that the pulse decreases till goes to zero. Note there are three pulses
on the scope. Measure the second one.

After this we have to know how much was the power we sent into the interferome-
ter. But as mentioned before we do not measure at point 4 but at point 10. We measure
the power at point 10, we splice a pigtailed fiber, we enter a variable attenuator and
then we measure the power. We find out what is the attenuation. Then we enter into
the calibrated fast photodiode. The total attenuation α1 has to be such that we have
pulses with height below 300 mAmp. Then we set the current on the EDFA such that
the values are equal to the one used before for the measurement. And we acquire the
pulse profile. There are two pulses. You measure the second one.

To note that every time you make a measurement of losses as a reference you use
31.5 celsius on the thermoelectric unit, and 320 mAmp on the EDFA. Moreover when
you make a measurement let the amplifier on the new current value for one minute in
order to let it stabilize.

A.7 Elaboration of the Data

Convert the data in ascii format. Use an appropriate software to treat the data (for
example Origin). For each current value there is a correspondent pulse profile. Subtract
the background from the pulse profile. Measure the height at half width. Take the
values and multiply them by the attenuation factor α1. Multiply the value by 2.23.
Divide the value by 262.2. The value you obtain is in Watts.

As an example we consider the calibration done December the 6th, 2001, for the
measurement of fiber ITU L-1. In table A.1 we report in the first column the current
set on the EDFA in mAmp, in the second column the height at half width of the pulse
in V, in the third column the value corrected by the attenuation factor α1, in the fourth
column the values (mW) are corrected by the calibration factor η, in the fifth column
there is the correction of the interferometer (2.23) because we want the power at point
4.

The conversion curve is given in Fig. A.5.
Now we treat the data relative to the fiber. Take the pulse profiles, subtract the

background and find the height at half width.
Here no conversion into Watts is necessary. It is enough to know the values in

arbitrary units. There is a correspondence now between the interference signal and the
entry peak power at 4. We have to fit the data using the theoretical equation. Note that
in the theoretical equation Eq. (2.4) no losses are taken into account. But we have three
different kind of losses. Coupling loss β, attenuation loss β′, and FM loss β′′. So we find



Appendix A ITU Round Robin (Step-by-step measurement procedure) 117

I (mAmp) I0 (V) I1 (V) I2 (V) I (W)

300 0.0028 2 0.01 0.02
310 0.0067 6 0.02 0.05
319 0.0126 11 0.04 0.09
330 0.0237 21 0.08 0.17
340 0.032 28 0.11 0.23
360 0.053 46 0.17 0.39
370 0.061 53 0.2 0.45
390 0.074 64 0.24 0.54
410 0.085 74 0.28 0.62
430 0.094 82 0.31 0.69
460 0.106 92 0.35 0.78
490 0.117 102 0.39 0.86
530 0.129 112 0.42 0.95

Table A.1: Experimental values for the calibration of the photodiode. See text for explanation
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Figure A.5: In the figure is shown the conversion curve from current set on the EDFA and the power
in Watts at the entry of the IF.
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first the efficient length Le f f. Take the attenuation loss of the fiber β′ and divide it by
the length of the fiber. We obtain the attenuation factor α in dB/km. Then we divide
this value by 4.343 and obtain α expressed in km−1. The efficient length Le f f is equal
to:

Le f f =
1
α

(1−exp(−α ·L))

where L is the length of the fiber in km, and α is expressed in km−1.
Then we calculate a new L∗e f f that takes into account that we have a double pass of

the FUT and of the coupling and FM losses.

L∗e f f =
(
1+β2 ·β′ ·β′′

)
β ·Le f f

At this point we can fit the data with the following function with two free parameters
A and n2/Ae f f :

y = A·x ·cos2
(

0.1472·x ·L∗e f f ·
n2

Ae f f

2000

)
where A is a normalization factor.

Usually take at least two measurements on the same fiber in different days and
check that you obtain not the same values of itnensity (because they depend on the
splice quality of that day) but of the value n2/Ae f f . Examples of data acquisition for
all the different fibers of the ITU Round Robin are shown in Appendix A.8.

The values of the determined n2/Ae f f values are reported in tables A.9.
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A.8 Experimental data ITU Round Robin

Here are shown the data relative to the measurements made on the fiber for the ITU
Round Robin. For each fiber two measurements were taken in two different days.
Every time a new set of measurements was taken a calibration was made. In the figures
are reported the data for the L∗e f f, for the χ2, for the n2/Ae f f and for the n2. In figure
A.22 is shown a comparison between two measurements taken at a distance of several
months on the same fiber but after having rebuilt the setup from scratch. It results that
the data are very well reproducible.

Data concerning the measurements:

• December, 6th 2001

– Fiber NTT #1

– Fiber 1-L

– Fiber 2-L

– Fiber 3-L

– Fiber 4-L

• December, 7th 2001

– Fiber NTT #1

– Fiber 2-L

– Fiber 5-L

– Fiber 6-L

– Fiber 7-L

– Fiber 8-L

• December, 8th 2001

– Fiber 2-L

– Fiber 1-L

– Fiber 3-L

– Fiber 4-L

– Fiber 5-L

– Fiber 6-L

– Fiber 7-L

– Fiber 8-L
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Figure A.6: Detected interference signal power as a function of launch power: (open circles) measured
data, (solid line) theoretical fit. Fiber 1-L, measure nr.1.
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Figure A.7: Detected interference signal power as a function of launch power: (open circles) measured
data, (solid line) theoretical fit. Fiber 1-L, measure nr.2.



Appendix A ITU Round Robin (Step-by-step measurement procedure) 121

0.0 0.2 0.4 0.6 0.8
0.0

0.2

0.4

0.6

0.8

1.0

FIBER 2-L first measurement

χ2 = 0.003
LEFF 8.790 km

n2/Aeff 3.30 ± 0.05  10-10 W-1

n2          2.91 ± 0.05  10-20 m2W-1

 

 

In
te

ns
ity

 (
a.

u.
)

Power (W)

Figure A.8: Detected interference signal power as a function of launch power: (open circles) measured
data, (solid line) theoretical fit. Fiber 2-L measure nr.1.
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Figure A.9: Detected interference signal power as a function of launch power: (open circles) measured
data, (solid line) theoretical fit. Fiber 2-L measure nr.2.
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Figure A.10: Detected interference signal power as a function of launch power: (open circles) mea-
sured data, (solid line) theoretical fit. Fiber 3-L measure nr.1.
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Figure A.11: Detected interference signal power as a function of launch power: (open circles) mea-
sured data, (solid line) theoretical fit. Fiber 3-L measure nr.2.
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Figure A.12: Detected interference signal power as a function of launch power: (open circles) mea-
sured data, (solid line) theoretical fit. Fiber 4-L measure nr.1.
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Figure A.13: Detected interference signal power as a function of launch power: (open circles) mea-
sured data, (solid line) theoretical fit. Fiber 4-L measure nr.2.
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Figure A.14: Detected interference signal power as a function of launch power: (open circles) mea-
sured data, (solid line) theoretical fit. Fiber 5-L measure nr.1.
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Figure A.15: Detected interference signal power as a function of launch power: (open circles) mea-
sured data, (solid line) theoretical fit. Fiber 5-L measure nr.2.
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Figure A.16: Detected interference signal power as a function of launch power: (open circles) mea-
sured data, (solid line) theoretical fit. Fiber 6-L measure nr.1.
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Figure A.17: Detected interference signal power as a function of launch power: (open circles) mea-
sured data, (solid line) theoretical fit. Fiber 6-L measure nr.2.
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Figure A.18: Detected interference signal power as a function of launch power: (open circles) mea-
sured data, (solid line) theoretical fit. Fiber 7-L measure nr.1.
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Figure A.19: Detected interference signal power as a function of launch power: (open circles) mea-
sured data, (solid line) theoretical fit. Fiber 7-L measure nr.2.
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Figure A.20: Detected interference signal power as a function of launch power: (open circles) mea-
sured data, (solid line) theoretical fit. Fiber 8-L measure nr.1.
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Figure A.21: Detected interference signal power as a function of launch power: (open circles) mea-
sured data, (solid line) theoretical fit. Fiber 8-L measure nr.2.



Appendix A ITU Round Robin (Step-by-step measurement procedure) 128

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2

0.4

0.6

0.8

1.0

NTT #1

 

 

χ2 = 0.001
LEFF 2.824 km
n2/Aeff (NEW) 6.43 ±0.06
n2/Aeff (OLD) 6.47 ±0.08

 07.12.01
 11.04.01

In
te

ns
ity

 (
a.

u)

Power (W)

Figure A.22: Detected interference signal power as a function of launch power: (open circles) mea-
sured data, (solid line) theoretical fit. Fiber NTT #1 taken at two different dates separated by 8 months.
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A.9 Tables ITU Round Robin

Here are reported the results obtained during the measurements for the different fibers
of the ITU Round Robin.

In table A.2 and A.3 are shown the characteristics of the fiber as reported by the ITU
Round Robin organizer (Prof. Y. Namihira) together with the average values obtained
in Geneva for the n2/Ae f f and for the n2 with relative errors. In this case the absolute
maximum deviation (MD) from the average is used as an estimate for the error (two
measurements were taken).

In the other following tables, in each one are reported in more details the values
obtained for all the fibers.

In table A.4 and A.5 are shown the values obtained during each measurement for
all the fibers. Are given the splice loss β, the total attenuation along the fiber β′, the
Faraday Mirror loss β′′, the efficient length L∗e f f, the n2/Ae f f and relative error, the n2

and relative error, and the χ2. The errors on n2/Ae f f are the one obtained from the fit
of the data.

In table A.6 and A.7 are reported the same results but on other measurements taken
on a different day.
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Final Data for the Fibers L-1 .. L-4

Fiber ID Fiber 1-L Fiber 2-L Fiber 3-L Fiber 4-L
(SMF, G.652) (CSF, G.654) (DSF1, G.653) (DSF2, G.653)

L (km) 5.36 7.65 4.43 4.82

α (dB/km) 0.19 0.17 0.21 0.21
@1550 nm

D (ps/nm/km) +16.0 +19.0 -0.63 -1.30
@1550 nm

Ae f f (µm2) 84.5 88.2 46.7 45.6
@1550 nm

n2/Aeff (VALUE) 3.16 3.2 5.6 5.9
(10−10W−1)

n2/Ae f f (MD) 0.06 0.1 0.1 0.3
(10−10W−1)

n2 (VALUE) 2.67 2.8 2.64 2.7
(10−20m2W−1)

n2 (MD) 0.07 0.1 0.09 0.2
(10−20m2W−1)

Table A.2: Parameters and final values for the n2/Ae f f of the first set of fibers. ITU Round Robin. The
absolute maximum deviation from the average is used as an estimate for the error.
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Final Data for the Fibers L-5 .. L-8

Fiber ID Fiber 5-L Fiber 6-L Fiber 7-L Fiber 8-L
(NZDSF1,G.655) (NZDSF2,G.655) (NZDSF3,G.655) (DSC)

L (km) 6.96 4.4 5.46 2.95

α (dB/km) 0.20 0.20 0.20 0.50
@1550 nm

D (ps/nm/km) -2.27 +4.63 -2.52 -108.4
@1550 nm

Ae f f (µm2) 55.5 51.3 72.7 22.8
@1550 nm

n2/Aeff (VALUE) 5.23 5.8 4.0 17.5
(10−10W−1)

n2/Ae f f (MD) 0.07 0.1 0.1 0.4
(10−10W−1)

n2 (VALUE) 2.91 2.97 2.9 3.9
(10−20m2W−1)

n2 (MD) 0.07 0.09 0.1 0.2
(10−20m2W−1)

Table A.3: Parameters and final values for the n2/Ae f f of the second set of fibers. ITU Round Robin.
The absolute maximum deviation from the average is used as an estimate for the error.
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First Measurement on Fibers L-1 .. L-4

Fiber ID Fiber 1-L Fiber 2-L Fiber 3-L Fiber 4-L
(SMF, G.652) (CSF, G.654) (DSF1, G.653) (DSF2, G.653)

Splice Loss β 0.1 .15 0.3 0.3
(dB)

Total Attenuation β′ 0.9 1.75 1.15 1.6
(dB)

FM Loss β′′ 1.77 1.77 1.77 1.77
(dB)

Le f f 7.27 8.79 5.33 6.01
(km)

n2/Aeff (VALUE) 3.10 3.30 5.53 5.58
(10−10W−1)

n2/Ae f f (FIT ERROR) 0.02 0.05 0.02 0.02
(10−10W−1)

n2 (VALUE) 2.62 2.91 2.58 2.54
(10−20m2W−1)

n2 (FIT ERROR) 0.03 0.06 0.04 0.04
(10−20m2W−1)

χ2 0.0001 0.003 0.00001 0.0001

Table A.4: Experimental values for the first measurement on the first set of fibers. ITU Round Robin.
Errors are from the fit.
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First Measurement on Fibers L-5 .. L-8

Fiber ID Fiber 5-L Fiber 6-L Fiber 7-L Fiber 8-L
(NZDSF1,G.655) (NZDSF2,G.655) (NZDSF3,G.655) (DCF)

Splice Loss β 0.2 0.3 0.1 1.7
(dB)

Total Attenuation β′ 1.4 0.7 1.3 1.9
(dB)

FM Loss β′′ 1.77 1.77 1.77 1.77
(dB)

Le f f 8.24 5.72 6.94 1.91
(km)

n2/Aeff (VALUE) 5.16 5.67 3.85 17.8
(10−10W−1)

n2/Ae f f (FIT ERROR) 0.03 0.02 0.02 0.1
(10−10W−1)

n2 (VALUE) 2.86 2.91 2.80 4.1
(10−20m2W−1)

n2 (FIT ERROR) 0.04 0.04 0.03 0.1
(10−20m2W−1)

χ2 0.0003 0.0001 0.0001 0.0001

Table A.5: Experimental values for the first measurement on the second set of fibers. ITU Round
Robin. Errors are from the fit.
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Second Measurement on Fibers L-1 .. L-4

Fiber ID Fiber 1-L Fiber 2-L Fiber 3-L Fiber 4-L
(SMF, G.652) (CSF, G.654) (DSF1, G.653) (DSF2, G.653)

Splice Loss β 0.2 0.1 0.3 0.4
(dB)

Total Attenuation β′ 0.8 1.3 1.0 0.9
(dB)

FM Loss β′′ 1.77 1.77 1.77 1.77
(dB)

Le f f 7.42 9.61 5.57 6.07
(km)

n2/Aeff (VALUE) 3.23 3.18 5.78 6.23
(10−10W−1)

n2/Ae f f (FIT ERROR) 0.02 0.02 0.02 0.02
(10−10W−1)

n2 (VALUE) 2.73 2.80 2.70 2.84
(10−20m2W−1)

n2 (FIT ERROR) 0.03 0.03 0.04 0.04
(10−20m2W−1)

χ2 0.0005 0.003 0.001 0.0006

Table A.6: Experimental values for the second measurement on the first set of fibers. ITU Round
Robin. Errors are from the fit.
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Second Measurement on Fibers L-5 .. L-8

Fiber ID Fiber 5-L Fiber 6-L Fiber 7-L Fiber 8-L
(NZDSF1,G.655) (NZDSF2,G.655) (NZDSF3,G.655) (DCF)

Splice Loss β 0.1 0.2 0.2 1.4
(dB)

Total Attenuation β′ 1.4 1.0 1.1 1.5
(dB)

FM Loss β′′ 1.77 1.77 1.77 1.77
(dB)

Le f f 8.60 5.60 6.88 2.23
(km)

n2/Aeff (VALUE) 5.31 5.89 4.08 17.3
(10−10W−1)

n2/Ae f f (FIT ERROR) 0.02 0.02 0.02 0.4
(10−10W−1)

n2 (VALUE) 2.95 3.02 2.97 3.8
(10−20m2W−1)

n2 (FIT ERROR) 0.04 0.04 0.03 0.2
(10−20m2W−1)

χ2 0.0003 0.0001 0.0001 0.0001

Table A.7: Experimental values for the second measurement on the second set of fibers. ITU Round
Robin. Errors are from the fit.
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Channel Bit Rate Capacity Distance NBL Product
N B (Gbps) NB (Gbps) L (km) (Tbps · km)

10 10 100 50 5
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Abstract. We present both a theoretical and experimental analysis of nonlinear polarization
rotation in an optical fibre. Starting from the coupled nonlinear Schrödinger equations an
analytical solution for the evolution of the state of polarization, valid for fibres with large
linear birefringence and quasi cw input light with arbitrary polarization, is given. It allows us
to model straightforwardly go-and-return paths as in interferometers with standard or Faraday
mirrors. In the experiment all the fluctuations in the linear birefringence, including
temperature- and pressure-induced ones, are successfully removed in a passive way by using
a double pass of the fibre under test with a Faraday mirror at the end of the fibre. This allows
us to use long fibres and relatively low input powers. The match between the experimental
data and our model is excellent, except at higher intensities where deviations due to
modulation instability start to appear.
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1. Introduction

The potential of nonlinear polarization rotation (NPR) to
build ultrafast devices was recognized a long time ago
and has received considerable attention since then. It has
been proposed to exploit it for optical switches [1], logic
gates [2], multiplexers [3], intensity discriminators [4],
nonlinear filters [5], or pulse shapers [6]. However, an
inherent problem with all these applications is the stability
of the output state of polarization, generally subjected to
fluctuations of the linear birefringence caused by temperature
changes and drafts in the fibre environment. Of course, the
same problem was also encountered in the few experiments
dealing with the characterization and measurement of the
NPR itself. In [7], the fluctuations of the output polarization
were too strong to allow a meaningful measurement of NPR
in a polarization maintaining fibre at 1064 nm, and in [8],
where 514 nm light was injected into a 60 m long fibre with
a beat length of 1.6 cm, a complicated arrangement had to
be employed for the extraction of the changes caused by
temperature drifts.

As the fluctuations become worse for fibres with a large
birefringence, and as the effect of NPR is proportional to the
inverse of the wavelength, it is hard to measure NPR directly
in a polarization-maintaining (PM) fibre at the telecom
wavelength of 1.55 µm. In this work we propose a method
for removing the overall linear birefringence, and therefore

also its fluctuations, in a passive way by employing a Farady
mirror (FM) [9] and a double pass of the fibre under test.
To check how this—nowadays standard—method [10–13] of
removing linear birefringence acts on the NPR, we develop
in section 2 of this paper a simple model to calculate the
action of linear and nonlinear birefringence. Using this
model, it is then easy to show that the proposed method
removes the overall linear birefringence only, whereas the
nonlinear one, leading to NPR, remains unchanged. After
describing the experimental setup, the results of our NPR
measurements using a FM are presented in section 3, along
with the predictions from our analytical model. The excellent
agreement between the two demonstrates that using the
FM, the overall linear birefringence is indeed removed
completely, allowing one to observe the NPR otherwise
hidden within the noisy background of polarization changes
due to environmental perturbations. This result also validates
our method for possible implementation with a variety of
other applications like the ones mentioned at the beginning
of this section, with the prospect of drastically increasing
their polarization stability.

2. Theoretical background

In a dielectric medium, an intense elliptical input pulse
induces birefringence—via the optical Kerr effect—due to

1464-4258/00/040314+05$30.00 © 2000 IOP Publishing Ltd
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Figure 1. Evolution of the state of polarization as represented on
the Poincaré sphere. (a) Polarization ellipse self-rotation in an
isotropic medium. The Stokes vector is rotating around the σ3 axis
with an angle proportional to the length of the medium, the input
intensity, and the sine of the input ellipticity.
(b) High-birefringence fibre. The rotation of the Stokes vector
mainly consists of a fast rotation around the axis of linear
birefringence σθ , whereas the slow rotations due to the nonlinear
birefringence can be considered as small perturbations.

the different amounts of intensity along the major and minor
axis of the polarization ellipse. It is well known that in
isotropic media this self-induced birefringence leads to a
rotation of the polarization ellipse while propagating in the
medium [14, 15] (the effect is consequently often called
polarization ellipse self-rotation and its representation on the
Poincaré sphere is shown in figure 1(a)). In fact, measuring
this ellipse rotation is one of the standard ways to evaluate
the cubic optic nonlinearity of the medium [16]. In an optical
fibre however, the situation becomes more complicated as
there is also the local intrinsic birefringence to be considered.
Generally, the polarization ellipse changes are hard to predict
in that case as the linear and nonlinear birefringence interact
in a complicated manner.

To formulate this more precisely, we start with the
coupled nonlinear Schrödinger equations describing the
propagation of light in an optical fibre. For cw input light,
time derivatives drop out, and we can write the equation in
a similar form as Menyuk [17] when assuming a lossless,
linearly birefringent fibre and by neglecting polarization
mode coupling:

∂zψ = −i(ωBσθ + ωα〈σ3〉ψσ3)ψ. (1)

ψ = (E1, E2)
t is the Jones column vector representing the

two components of the complex transverse electric fields
E1(z) and E2(z) at the position z along the fibre. The first
term in the right-hand side describes the linear birefringence,
where ω is the optical frequency and B the birefringence
(in s m−1). Note that B is assumed to be independent of
ω, an excellent approximation for standard fibres. The phase
birefringenceωB is multiplied by σθ = σ1 cos(θ)+σ2 sin(θ),
corresponding to linear birefringence in the θ direction, with
σ1,2,3 being the 2 × 2 Pauli matrices. The second term
in the right-hand side of (1) accounts for the nonlinear
birefringence, with α = n2P

3cAeff
, and 〈σ3〉ψz =

|E1|2−|E2|2

|E1|2+|E2|2
. P is

the total light power, n2 the nonlinear refractive index, Aeff

the effective mode area, and c the speed of light.
For an intuitive understanding of the action of the two

terms in the right-hand side of (1), it is better to revert
to the Stokes formalism. On the Poincaré sphere, the
first term describes a rotation of the polarization vector
(Stokes vector) around axis σθ , lying on the equator and
corresponding to linear birefringence. Similarly, the second
term is a rotation around the vertical axis corresponding to
nonlinear birefringence. However, equation (1) shows that
the speed and the rotation direction in this case depends
on the polarization state through 〈σ3〉ψ , as is illustrated in
figure 1(b). Consequently, the two rotations are linked in
a complicated manner, and the resulting evolution of the
polarization vector is not obvious.

Fortunately, in standard telecom fibres, the speed of
rotation around the vertical axis is much smaller than the
one around the birefringent axis σθ even at considerable
power levels. This is because in such fibres B � α

(see (1)). For example, a fibre with a beat length of 10 m
has B ≈ 0.5 ps km−1 while α ≈ 0.006 ps km−1 for a power
of 10 W (λ = 1550 nm, n2 = 3.2 × 10−20, Aeff = 60 µm2)
(note that in this work, a PM fibre will be used with a beat
length in the mm range, making the ratio B

α
as large as 107).

The slow rotation due to the nonlinear birefringence can
therefore be treated as a perturbation that merely changes
the angular frequency of the fast rotation caused by the linear
birefringence. This becomes more obvious by rewriting (1)
as

∂zψ = − iωBσθψ − iωα 1
2 (〈σ3〉ψσ3

+ (1 − 〈σθ+ π
2
〉ψσθ+ π

2
− 〈σθ 〉ψσθ ))ψ (2)

where the identity ψ = 〈σ 〉ψσψ , valid for all ψ , has been
used. The term proportional to ψ affects only the global
phase and can be neglected. Further, the two terms 〈σ3〉ψσ3

and 〈σθ+ π
2
〉ψσθ+ π

2
cancel each other to first order—this can

be intuitively understood from figure 1(b) and was confirmed
by numerical simulations—producing only a small (second-
order) precession of the instantaneous rotation axis. Hence
we obtain the following approximation for the evolution of
the polarization vector:

∂zψ ≈ −iωBeffσθψ (3)

with the effective birefringence

Beff = B −
α

2
〈σθ 〉ψ (4)
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depending on the intensity and the polarization state of the
input light signal. Note that equation (3) preserves the square
norm |ψ |2 reflecting that we did not take into account losses.
Note further that when applying (3) for linearly polarized
input light we obtain the same formula as in [4].

The solution of (3) is straightforward, ψz =
exp(−iωBeffσθz)ψ0, and corresponds to a rotation of the
input polarization vector around the linear birefringence axis
σθ , with a rotation angle β given by

β = ω
(
B −

α

2
mθ(0)

)
z. (5)

mθ(0) is the projection of the input polarization vector on the
birefringence axis σθ , and z the distance from the input end.

In principle, the NPR, caused by the nonlinear response
of the single-mode fibre to the input state, could now
be measured by varying the input power and observing
the corresponding change in the output polarization vector.
However, from a practical standpoint, this will be hardly
possible as equation (5) shows that slightest changes in the
linear birefringence B will completely cover the nonlinear,
intensity-dependent ones (remember that B � α for
reasonable input power levels). Indeed, earlier work [8, 18]
greatly suffered from temperature- and pressure-induced
changes of B always present in a laboratory environment,
even though they were using short fibres.

Nowadays, a simple and efficient way to get rid of any
kind of fluctuation in the intrinsic birefringence is to make a
double pass of the fibre under test by means of a FM [9,10].
The linear birefringence accumulated during the forward
path is then automatically compensated on the return path.
However, it is not a priori clear what will happen to the
nonlinear birefringence.

To investigate this point, we rewrite the solution of (3)
in the Stokes formalism,

m(L) = R̂θ (β(L))m(0) (6)

where m(0) is the input Stokes vector, R̂θ is a rotation
operator around the axisσθ , andβ is as given by (5). Applying
the action of the FM, mF (L) = −m(L) (the superscript F
indicates the state of polarization after reflection from the
FM), and of the return path, R̂−1

θ , we get

mF (2L) = R̂−1
θ

[
ωL

(
B −

α

2
mFθ (L)

)]
R̂θ

×
[
ωL

(
B −

α

2
mθ(0)

)]
m(0) (7)

= − R̂θ [ωαLmθ(0)]m(0).

The result shows that the rotation due to the nonlinear
birefringence of the forward and return path do not cancel
out but add, giving twice the angle compared with a single
(forward) trip through the fibre (equation (5)). This is
because the rotation direction of the nonlinear birefringence
is different for the upper and lower hemisphere of the
Poincaré sphere (see figure 1(b)) contrary to birefringence
in linear optics. Therefore, after reflection at the FM, which
transforms the polarization state to its orthogonal counterpart
(i.e. flipping it to the other hemisphere), the sense of rotation
of the NPR during the return path will be the same as the
forward path and the effects add up.

Figure 2. Experimental setup of the NPR measurement. DFB,
distributed feedback laser; EDFA, erbium-doped fibre amplifier;
PC, polarization controller; FUT, fibre under test; FM, Faraday
mirror; PBS, polarizing beam splitter.

3. Experiment

3.1. Setup

The experimental setup used to measure the NPR is shown
in figure 2. The light source is a distributed feedback laser
diode (DFB) operated in pulsed mode at a wavelength of
1559 nm, consecutively amplified by an EDFA (small signal
gain 40 dB, saturated output power 23 dBm, where dBm is
a physical unit of power). Typically, pulses with a duration
of 30 ns, a repetition rate of 1 kHz and a peak power of up to
6 W were used. The light is then launched into the test fibre
via a 90/10 coupler and a polarization controller. The coupler
was inserted for the detection of the backward-travelling light
after the double pass of the test fibre, with its 90-output port
connected to the source in order to maintain the high launch
powers into the test fibre. The polarization controller, PC1,
allowed us to adjust the polarization of the light launched into
the test fibre, which is important for the strength of the NPR
as demonstrated by equation (5).

In order to satisfy the assumption of neglectable
polarization mode coupling used in the previous section,
a highly birefringent, PM fibre was used as the test fibre.
Its linear birefringence B is of the order of 5 ps m−1,
corresponding to a beat length in the mm range. The fibre
length was 200 m, giving a total of 400 m round-trip length
of the light reflected by the FM.

The polarization state of the light after the double pass
of the test fibre was examined by an analyser consisting of
a polarization controller PC2 and a polarizing beam splitter
(PBS). To achieve a good sensitivity of the analyser, it was
calibrated to give a 50/50 output of the PBS for low-power
signals where no nonlinear polarization rotation occurs.
Finally, the two PBS output channels were monitored by a
fast photodiode (200 ps response time) and a sampling scope.

The measurements were then performed in the following
way: for a given launch power, the polarization controller
PC1 was adjusted to give the smallest possible output
power at the monitored PBS channel. Consequently,
the difference between the two PBS output channels is
maximized, corresponding to a maximum value of the NPR.
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Figure 3. Minimum output power of PBS channel 1 as a function
of the launched power for a 200 m long PM fibre. Squares:
measured data; solid curve: prediction from our model; straight
line: prediction in the absence of NPR. The deviations of the
experimental data from the predicted values at high powers are due
to modulation instability not included in the model.

Figure 4. Minimum output power of PBS channel 1 as a function
of the launched power for a 100 m long PM fibre. Squares:
measured data; solid curve: prediction from our model; straight
line: prediction in the absence of NPR.

3.2. Results

The experimental results are shown in figures 3 and 4.
In figure 3, the minimum output power (squares) of

the monitored PBS channel is given as a function of the
peak power in the test fibre. Note that the reported output
power was normalized to account for the analyser losses and
corrected for the PBS extinction ratio. Consequently, without
any NPR, the reported output power would equal half of the
power in the test fibre (straight line). As can be seen in
figure 3, the effect of NPR is negligibly small up to about
0.5 W. For higher launch powers, NPR manifests itself by
a reduction of the power in the monitored PBS channel. In
fact, its action becomes so strong that for launch powers above
about 2.5 W, the output power starts actually to decrease in
spite of the linear increase that would be experienced in the
absence of NPR. In principle, this power drop should continue
until the nonlinear rotation of the input polarization is such
that all the power is in the other PBS channel. However,
as figure 3 shows, this is not happening. The observed
increase in the minimum output power could be related to
modulation instability: above 4.5 W launch power, a Stokes

and anti-Stokes sideband shifted by 2 nm with respect to
the laser peak appeared. These sidebands are generated in
a distributed fashion along the test fibre, which means that
the compensation of the linear fibre birefringence is failing.
Therefore, and due to the large birefringence B of the PM
fibre used, the sidebands will be almost randomly polarized
at the output. As a consequence, about half of the power
transferred to the sidebands will appear in the monitored PBS
output channel leading to the observed increase in power.

Further, the measured results were compared with the
ones predicted by equation (8), taking into account the
analyser calibration and the adjustment of PC1 as used in the
experiment. The parameters used in the computation were the
ones from the experiment, i.e. a fibre length of L = 200 m,
and a nonlinear coefficient of n2 = 3.4 × 10−20 m2 W−1.
The effective core area of Aeff = 41 µm2 was chosen to
give a good match with the experimental results as we had
no exact value from the manufacturer. mθ(0), the projection
of the input state of polarization on the birefringent axis, was
varied in order to give a minimum output power from the
PBS channel, exactly like in the experiment.

The solid curve in figure 3 shows these computed
results. The figure clearly illustrates that the measured
data correspond very well with the computed results. This
validates our measurement method of NPR in optical
fibres and demonstrates that the linear birefringence and its
detrimental fluctuations are successfully removed by the FM.
Above an input power of 4.5 W, the curves deviate as expected
from the onset of MI that was not included in the analytical
model.

Figure 4 shows experimental and computed results for a
fibre length of 100 m. Note that to avoid cutting our 200 m
piece, we emulated the 100 m fibre length by introducing
a 20 dB attenuation for the reflected light. Consequently,
the light power on the return trip is too low to induce NPR,
and serves only to compensate for the linear birefringence of
the forward trip. As the figure demonstrates, NPR is indeed
reduced by a factor of two compared with the measurements
without attenuator, as expected from equation (8). Twice the
launch power is required to compensate for the shortened
length to get the same amount of NPR. Again, experimental
and computed data are in excellent agreement.

The experimental results of this section clearly
demonstrate that one can indeed use a FM to remove the
overall linear birefringence, which allows one to observe
the smallest nonlinear effects otherwise hidden within the
noisy linear birefringence. Note that the change in the output
polarization due to environmental perturbations is especially
pronounced in PM fibres (when the input is not aligned with
one of the two fibre axes) due to its short beat length in the
mm range. When not using a FM, the output polarization
changed (for example) drastically when just approaching
the fibre spool with the hands, inhibiting any meaningful
measurement.

4. Conclusion

Starting from the nonlinear Schrödinger equations, an
analytical solution for the evolution of the state of polarization
in a high-birefringence optical fibre has been developed. It
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allows for a simple and straightforward modelling of go
and return paths as, for example, in interferometers with
standard or Faraday mirrors. Using this model, we showed
that it is possible to remove the overall linear birefringence
in a double-pass arrangement with a FM while at the same
time leaving the nonlinear birefringence, resulting in NPR,
unchanged. Only this arrangement allowed us to measure the
NPR in a long PM fibre at telecom wavelength in a laboratory
environment where it is otherwise hidden by the changes in
the output polarization caused by temperature and pressure
fluctuations.

The experimental results for the NPR obtained with a 200
m long PM fibre at a wavelength of 1.55µm were in excellent
agreement with the theoretical predictions from our model for
launch power up to 4.5 W. Above that value deviations due
to modulation instability, not included in our model, were
present. Further work to apply our model to standard, non-
PM fibres where the coupling between the polarization modes
is not negligible, is in progress.

Due to its generality, the presented method of removing
the linear birefringence while leaving the nonlinear one
unchanged might prove to be a very valuable tool in numerous
other applications as well, such as, for example, optical multi-
/demultiplexers.

Note that in the case of non-PM fibres, where the
coupling between the polarization modes is not negligible,
NPR is reduced due to a scrambling related to the ratio
between the coupling length and the fibre length. In fact, this
effect can be exploited to get information about the important
coupling length parameter in standard fibres, as will be shown
elsewhere.
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Abstract
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1. Introduction

Considering the high bit rates of future optical
fiber communication systems, optical signal process-
ing could soon become a necessity. In order to
demux a single channel from a 100 Gbrs time

Ž .division multiplexed TDM signal e.g., a switching
time of about 5 ps will be required. All-optical
switching techniques based on the optical Kerr effect
w x1–6 are very attractive in that respect due to the

w xultrafast Kerr response 7–9 of less than a few fs.
Indeed, an all optical Kerr switch was demonstrated
recently to read out a 10 Gbrs channel from a 40

w xGbrs TDM signal 10 . Besides the standard switch
parameters like switching ratio, insertion loss or

) Corresponding author. E-mail:
claudio.vinegoni@physics.unige.ch

switching time, the stability of the switch is an
important issue. Variations in the input control or
signal polarizations as well as changes of the intrin-
sic birefringence of the Kerr medium will affect the
switch. Variations of the input signal polarization
can be dealt with by adopting a polarization diversity

w xscheme, like e.g. in Ref. 10 . In order to keep the
switch stable internally, the control pulse polariza-
tion should be kept as stable as possible by using a
proper set-up. Moreover, changes in the signal polar-

Žization in the Kerr medium typically a polarization
.maintaining PM fiber due to changes in the intrinsic

fiber birefringence have to be avoided since they can
greatly reduce the extinction ratio of the switch. An

Žactive correction scheme e.g. a polarization con-
w x .troller 11 with a feedback loop is typically not

rapid enough to correct the fast, acoustical perturba-
tions, and may not work at all for large changes due
to its limited range of operation.

0030-4018r00r$ - see front matter q 2000 Published by Elsevier Science B.V.
Ž .PII: S0030-4018 00 00845-2
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To avoid these problems, we use on one hand a
non-interferometric switch 1, and on the other hand a
passive stabilization scheme. In interferometric
switches like Sagnac loops or Mach–Zehnder inter-

Ž .ferometers IF , the switching is based on a phase-
shift induced between the two different propagation
directions or arms, respectively. If the signal is not
carefully launched into an axis of a PM fiber, it will
split into four different polarization modes, two in
each propagation direction or interferometer arm,
respectively. In addition to the phase-shift between
the two different propagation directions or interfer-
ometer arms, additional ‘local’ phase-shifts between
the polarization modes with the same propagation

Ž .direction or within the same IF arm will degrade
the switch quality. In the switch presented here, this
problem is avoided by uniquely using this ‘local’
phase-shift between the two signal polarization modes
in a single fiber, thereby reducing the relevant mode
number to two. Having two modes only, we can then
use a passive stabilization scheme that works both
for fast and slow, arbitrarily large changes in the
fiber birefringence. Although in this work an optical
fiber is used to induce a nonlinear phase-shift, it
should be noted that the stabilization scheme holds

Žas well for any other Kerr elements e.g. semicon-
.ductor saturable absorbers SOA .

2. Principle of operation

As mentioned above, the principle of the optical
Kerr switch presented here is based on an induced
phase-shift between the two signal polarization modes
in a single fiber. It is induced by powerful control

Žsignal pulses that lead to a different phase-shift via
.the optical Kerr effect for signal components with

the same and orthogonal polarization, respectively.
The corresponding change in the output signal polar-
ization is maximized if the control signal polariza-
tion matches the polarization of one of the two signal
polarization modes during the entire propagation in

1 ‘Non-interferometric’ in the sense that the signals being inter-
fered are not from two physically separate arms. Of course linear
optics is always interferometric in a strict sense of the word
Ž .superposition principle .

the Kerr fiber. By inserting a polarizing beam splitter
Ž .PBS , the signal is switched between the two PBS
output ports depending on the amount of the induced
phase-shift.

For a control pulse linearly polarized along one of
the birefringent axis of a PM fiber, it is easy to show
that the phase shift Df acquired by a signal linearly

w xpolarized at 458 is 12

L Peff8
Dfs p n , 1Ž .23 ž /l Aeff

where n is the nonlinear refractive index of the2

fiber, l is the signal wavelength, A is the effec-eff

tive area of the fiber and P is the peak pump power.
Fiber losses are included in the effective length

Ž .w Ž .xL s 1ra 1yexp yaL where L is the lengtheff

and a the fiber loss coefficient. For a PBS adjusted
so that all the signal is at output port 2 when the
control pulse is absent, the signal at output port 1
becomes

Df
2Tssin , 2Ž .

2

where the induced phase shift Df is given by Eq.
Ž .1 . A different wavelength is conveniently used for
the control pulses so that they can be combined with
the signal using a wavelength division multiplexer
Ž .WDM . As a consequence, a walk-off between the
control pulses and the signal is introduced, ultimately
limiting the switching time. A large walk-off also
enlarges the required control peak power because of

Ža reduced interaction length i.e. smaller L in Eq.eff
Ž ..1 . To keep the switch fast and efficient, either a
fiber with low group dispersion has to be used, or the
wavelength separation should be kept as small as
possible. The latter leads to a trade-off between the

Ž .switching time determined by the walk-off and the
Ž .extinction ratio determined by the WDM filtering .

For a detailed analysis, the reader is referred to Ref.
w x3 .

It is very important to notice that the transmission
Ž .given in Eq. 2 holds only for a fixed intrinsic

birefringence of the fiber. Any fluctuation of this
birefringence, caused e.g. by temperature drifts or
pressure changes, leads to an additional phase-shift
randomly changing the bias of the switch. In order to
reduce this effect detrimental for the switch stability,
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w xdifferent methods have been proposed 3,11 . A very
promising solution is to make a double pass of the

Ž . w xfiber by means of a Faraday mirror FM 13–16 .
The FM transforms any input polarization state to
the orthogonal one upon reflection. Consequently,
the signal components that were polarized parallel to
the fast axis during the forward propagation will be
polarized parallel to the slow axis during the return
path and vice versa. The overall acquired phase is
therefore the same for any input polarization, and the
intrinsic birefringence is automatically removed as
long as it is stable during a single go-and-return path.
In this way, fluctuations with frequencies up to about

Ž .0.5 MHz 200 m long fiber can be removed.
Although the application of a FM is widely spread

in linear optics, we believe to be the first ones
having demonstrated its usefulness for nonlinear op-

w xtics as well. Especially, we showed in Ref. 6 both
theoretically and experimentally that only the linear
phase fluctuations are removed, whereas the pur-
posefully induced nonlinear effects of the go and
return-path add up. This allowed to measure the
nonlinear polarization rotation in an optical fiber.

3. Set-up

The setup of the Kerr switch using the described
stabilization scheme is shown in Fig. 1. The control
signal was generated by a directly modulated DFB

Fig. 1. Experimental setup. DFB distributed feedback laser, EDFA
erbium doped fiber amplifier, PC polarization controller, FM
Faraday mirror, PBS polarizing beam splitter, WDM wavelength
division multiplexer

laser diode with a wavelength of 1559 nm, amplified
by an EDFA with a small signal gain of 40 dB and a
saturated output power of 23 dBm. The pulses from
the DFB laser had a duration of 28 ns with a
repetition rate of 1 kHz. This is good enough to
demonstrate the usefulness of the stabilization scheme
and the basic functioning of the switch – in an
application, short control pulses at a high repetition
rate could be used. In order to have a larger side-mode
suppression of the DFB output at the signal wave-
length, an external small pass filter was inserted after
the EDFA. Using a WDM, the control pulses were
then coupled into the Kerr fiber along with the signal
consisting of cw light generated by a second DFB at
1556 nm. The signal power in the Kerr fiber was
y1.8 dBm, whereas several Watts of control pulse
peak power were available. For the Kerr medium, we
first used a PM fiber with a length L of 200 m. The
wavelength difference Dl of 3 nm between control
and signal light consequently leads to a walk-off of

Žabout 10 ps assuming a GVD value of Ds17
.psrkm nm :

D t,DLDl,10 ps .

Ž .This value represents a lower limit for the 0–100 %
riserfall time of the switch. For even shorter switch

Ž .times, a dispersion shifted fiber DSF would have to
be used. For the initial adjustment of the switch, the
polarization of both control pulses and signal could
be set independently by polarization controller PC1
and PC2, respectively. This allows both for the pump
to be launched into a birefringent axis of the PM
fiber and for the signal polarization to be set at 458

to this axis for a maximum switching ratio at the
output. At the end of the PM fiber the pump was
removed with a second WDM, whereas the signal
was reflected back with a Faraday mirror. After this
double pass, the reflected signal is sorted out by a
circulator and put on a PBS. The switch is biased by
another polarization controller PC3, which allows to
set the desired ratio of the signal light at the two
PBS output ports. Typically, it was adjusted for

Ž .maximum power in port 1 line port , i.e. minimum
Ž .power in port 2 switch port in the absence of

Ž .control pulses. The switch port, for which Eq. 2
holds, was then monitored using a fast photodiode
with a response time of 200 ps. The extinction ratio
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of the switch mainly depends on the extinction ratio
Ž .of the PBS 20 dB in our case and on the pump

Žpower suppression at the signal wavelength 60 dB
.in our set-up . If necessary, higher values could be

obtained by using additional polarization selection or
filtering. Note that the required control signal peak

Ž .power or fiber length could in principle be reduced
to half its value if the pump is not removed at the
FM, thereby allowing a double pass of the Kerr
fiber. The switch performance is still independent of
the control pulse pattern in that case as long as the
total power of the control signal within half the

Ž .round-trip time 1 ms in our case doesn’t change too
much, a situation typically realized when switching
high bit rate signals.

4. Experimental results

4.1. PM fiber

The experimental results using a 200 m PM fiber
as the Kerr medium are shown in Fig. 2.

The proper working of our stabilization scheme
was checked by monitoring the output power at the
switch port for several hours. After the initial setting
of the switch, it was left alone without any re-adjust-
ments for a time period of several hours, while a
normal activity in the lab was maintained, with
people working around the table. Moreover, a change
in the temperature of 5 degrees was observed during
that time span. The measured fluctuations of the
switch port signal power are shown in Fig. 2a.

Ž .Besides the measured data points squares , the mean
Ž . Žvalue bold line and the standard deviation s thin

.lines are shown. As is demonstrated by the figure,
Žthe obtained switch stability was rather good less

.than 2% fluctuations when using the Faraday mir-
ror. When it was replaced by a normal mirror on the
other hand, thereby removing the stabilization, the
switch port signal output power rapidly changed in
the range from zero to full switch power. Indeed, it
is well known that the polarization of light coupled
into both the birefringent axes of a PM fiber – due to
its short beatlength of only a few mm – is very
susceptible to any perturbation. The use of a stabi-
lization is therefore an absolute necessity.

Ž .Fig. 2. Switch performance using a 200 m PM fiber. a Relative
fluctuations of the switch port signal power as a function of time.

Ž . Ž .Measured data squares , mean value bold line , and standard
Ž . Ž .deviation s thin lines . b Normalized switching ratio as a

Ž .function of the control signal power. Measured data squares ,
Ž .theoretical fit solid line .

Fig. 2b gives the normalized switching ratio as a
function of the applied control signal peak power.
The normalized switching ratio is defined as the ratio
of the actually measured power from the switch port,
divided by the maximum signal power obtainable

Žfrom that same port measured by adjusting PC3 for
maximum transmission to the switch port in the

.absence of control pulses . The experimentally ob-
Ž . Žtained values squares are compared with a fit solid

. Ž .line using Eq. 2 and requiring a peak normalized
switching ratio of 1. As the figure shows, the experi-

Ž 2mental data corresponds well with the model x s
.0.8 . The maximum switching ratio we could obtain

in the measurement was however only 65% for a
control peak power of 1.7 W. For higher control
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powers, the signal started to exhibit strong power
fluctuations within the temporal switch window of
28 ns, which inhibited a proper functioning of the
switch. As revealed by the optical spectrum, these
fluctuations were caused by the onset of concurring
nonlinear effects normally absent until much higher
peak power times distance values. We believe that

Žour non-optimal control signal source side-band
.suppression was seeding the observed nonlinearities,

leading to a much lower threshold power. The ob-
served limit in the switch ratio is therefore not a
general problem of the demonstrated switch tech-
nique, but was unique to our experimental set-up.

4.2. Standard fiber

Further, we analyzed the possibility to use a
Ž .standard i.e. non PM fiber for the Kerr medium.

Besides reducing the switch cost, the assembly of the
switch is much easier using standard than PM fiber,
and the insertion loss can be reduced as the splice
losses are lower. In order for the switch to work
properly and efficiently, the part of the signal having
the same polarization as the control signal at the
input should keep the same polarization as the con-
trol during propagation, whereas the orthogonal part
should stay polarized orthogonal. Only in this way
an important phase shift between these two signal
components can build-up. It is obvious that the
above requirement is perfectly fulfilled in a PM
fiber, where a signal component that is coupled into
one of the two fiber axes remains there during
propagation. In a standard fiber however, the situa-
tion is different. The above requirement, which cor-
responds, on the Poincare sphere, to a conservation´
of the angle between the control and signal Stokes
vectors during propagation, is no longer met exactly.
This is because the polarization mode coupling
Ž w x.specified by the coupling length h 17 present in
the standard fiber leads to a coupling of the control

Ž .and signal light into both the local fiber axes,
where they will evolve differently due to their differ-
ent beatlengths. The conservation of the angle be-
tween the control and signal Stokes vectors conse-

Žquently depends on the fiber characteristics cou-
.pling length h, beatlength L and on the wave-b

length difference between the control and signal
light. We therefore first verified that this angle con-

servation was sufficiently good in the standard fiber
to be used as the Kerr medium. As a simple estimate,
we can use

as2p L 1rL l y1rL l ,Ž .Ž .Ž .b signal b control

Ž . Ž .where L l slr cB and the birefringence Bb
w xpsrm is assumed to be independent of the wave-
length. The estimate represents a worst case scenario
as the coupling length h is assumed to be much
larger than the fiber length L and that both signal
and control pulses were coupled into both fiber axes
at the input. Using the wavelength difference of 3
nm of our experiment, and a typical value of the
signal beatlength of 10 m, we get an angle difference
of just 78 after 100 m of fiber, which should not
cause any problems. Analysis of the Jones transfer
matrix measured at both the signal and control wave-
length further suggests that the angle should be
sufficiently conserved. However, these simple esti-
mates neglect nonlinear polarization evolution like

w xe.g. a self-rotation of the intense control signal 6 .
The testing of the switch was performed in a

similar way as described in the previous section.
However, as there is no well defined axis into which
to couple, the input states of polarization were varied
until a maximum in the switching ratio was found,
although the differences were not that large due to an
apparently small coupling length h of the employed
Kerr fiber. This small coupling length quickly leads
to a randomization of the fiber axes and makes the
results almost independent from the input polariza-
tion of the control signal. On the other hand, the
effective phase shift acquired by the signal is re-
duced by this randomization, and we had to use a
longer Kerr fiber of 680 m to obtain a sufficiently
large rotation of the signal at the fiber output.

As can be seen in Fig. 3a, the stability was once
more excellent when employing the FM. Fig. 3b
shows the observed switching ratio as a function of
the control peak power. The obtained switching ratio

Žcorresponds to 90% for control pulses with a peak
.power of 2.4 W before other concurring nonlinear

effects once more lead to a pulse break-up. The
experimental data are not too different from the ones

Ž .for the PM fiber Fig. 2b , i.e. the longer length of
Žthe standard fiber D Lsq480 m compared to the

.PM fiber used before accounts well for the phase-
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Ž .Fig. 3. Switch performance using a 680 m standard fiber. a
Relative fluctuations of the switch port signal power as a function

Ž . Ž .of time. Measured data squares , mean value bold line , and
Ž . Ž .standard deviation s thin lines . b Normalized switching ratio

as a function of the control signal power.

shift reduction caused by the ‘polarization scram-
bling’ and the different value of the ratio n rA .2 eff

The use of a standard fiber is therefore also interest-
ing from a physical point of view, as the functioning
of the switch could be exploited to reveal informa-
tion about the coupling length of the standard fiber.
Such investigations are however beyond the scope of
this paper and will be discussed elsewhere.

5. Conclusion

All-optical switching at 1.5 mm based on induced
nonlinear polarization rotation was successfully
demonstrated in both a polarization maintaining and

a standard telecom fiber. The insertion of a Faraday
mirror after the Kerr fiber led to a very good stability
of the switch for both cases.

In the standard fiber, switching was made possi-
ble because the small difference between the control
and signal wavelength allowed for a similar evolu-
tion of both signals along the fiber – the two corre-
sponding Jones transfer matrices were found to be
almost equal – thereby well preserving the angle
between the two respective Stokes vectors. As a
byproduct, the ratio n rA can be determined, and2 eff

using an appropriate model, information about the
coupling length h might be extracted as well. Further
work in this direction is in progress.
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Measurements of the Nonlinear Coefficient of
Standard SMF, DSF, and DCF Fibers Using

a Self-Aligned Interferometer and
a Faraday Mirror

C. Vinegoni, M. Wegmuller, and N. Gisin

Abstract—Using a method based on the detection of the
Kerr phase shift by a self-aligned interferometer, we present
measurements of the nonlinear coefficient 2 e� for standard
single-mode fiber (SMF), dispersion-shifted fibers, and dispersion
compensating fibers. The presence of a Faraday mirror in the
interferometer makes the setup very robust, and different test
fibers can be measured without any further readjustments.
Interlaboratory comparisons show that the values found with
our method are in good agreement with the other ones. Further,
analysis of a SMF fiber with large chromatic dispersion shows a
good reproducibility of the 2 e� measurements as a function
of fiber length.

Index Terms—Nonlinear optics, optical fiber measurements, op-
tical kerr effect.

I. INTRODUCTION

T HE IMPLEMENTATION of erbium-doped fiber ampli-
fiers and chromatic dispersion compensation allows for

long distance data transmission. Along with the technique of
wavelength-division multiplexing (WDM), this leads to an im-
portant amount of power inside the fiber over long distances,
and optical nonlinearities start to play a significant role. Their
magnitudes depend on the ratio , where is the non-
linear refractive index of the fiber and the effective area
of the mode. There are different methods to measure ,
based on self-phase modulation (SPM) or cross-phase modu-
lation (XPM) induced phase shift detection [1] using interfer-
ometric and noninterferometric schemes. The interferometric
detection scheme [2] presents the advantage that it can be im-
plemented more easily, but a disadvantage is its susceptibility
to environmental perturbations that leads to a poor stability. In
our setup, we obtained a considerable improvement of this tech-
nique by using a self-aligned interferometer [3] with a Faraday
mirror. This method has the advantage to be simple and all-fiber
implementable. The fluctuations due to the environmental per-
turbations are completely removed [4].

In this letter, after giving a brief description of our measure-
ment method, we compare the values of obtained with
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our method for dispersion-shifted fibers (DSF), dispersion com-
pensating fibers (DCF), and a standard single-mode fiber (SMF)
with the ones obtained by other institutions on the same fibers.
Our values are found to agree quite well with the results from
the different measurement methods employed by the other in-
stitutions. Moreover, we demonstrate that our results are inde-
pendent of the length of the test fiber (on a 10-km range) even
in the presence of large (17 ps/nmkm)group velocity disper-
sion (GVD), which cause some problems in other measurement
methods [5].

II. PRINCIPLE OFOPERATION

Due to the power dependence of the refractive index, a pulse
with peak power and wave number, traveling along a fiber
of length , will acquire a power dependent phase change
given by

(1)

The fiber losses are accounted for by the effective length
, with fiber loss coefficient [1].

The polarization parameter depends on the polarization char-
acteristics of the test fiber and the input signal polarization state.
It is equal to one for the case of a polarization maintaining fiber
if the light is coupled into one of the two axes. For the case of a
sufficiently long standard telecom fiber with a complete scram-
bling of the polarization, it was demonstrated that
[6]. Using (1), a measure of the acquired phase shift allows to
determine the ratio (or, through an independent mea-
surement of , the value of ).

The setup of the self-aligned interferometer is shown in Fig. 1
and is described in detail in [4]. High peak power pulses (pulse
length 20 ns) from an erbium-doped fiber amplifier (EDFA) are
split at the entry of the first coupler (coupling ratio 50/50) and
move along the two different arms of the interferometer. These
arms are different in length such that the two pulses do not inter-
fere when they recombine at the second coupler (coupling ratio
90/10). Due to the asymmetry of the last coupler, the two pulses
enter the fiber under test (FUT) with different powers, and ac-
cording to (1), they will acquire different amounts of phase shift
during the propagation along the FUT. The pulses are then re-
flected at the Faraday mirror (FM) and return back through the

1041–1135/01$10.00 © 2001 IEEE
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Fig. 1. Experimental setup of the self-aligned interferometer. DFB. EDFA. PC.
FUT. FM. D detector. FBG.

FUT and the interferometer, toward the first coupler. During the
go and return trip through the interferometer, four different paths
arepossible.Adoublepassof the long-arm (LL),of the short-arm
(SS), and a forward pass of the short (long) arm with a return
pass through the opposite arm (SL and LS, respectively). Due
to the difference in arm lengths, three different arrival times at
detector D1 can be distinguished. Only the middle pulse arising
from the interference between the SL and the LS pulses is fur-
ther analyzed. The power of this pulse depends on the phase
relationship between the two interfering signals and can be ex-
ploited to calculate the nonlinear phase shift experienced in the
FUT. Note that contrary to regular Mach–Zehnder interferome-
ters, the balancing of the interferometer arms is not critical here
as the path lengths of the two interfering signals are automati-
cally matched (self-aligned).

It is possible to show [4] that in order to have the maximum
visibility at the exit of the interferometer (i.e., the pulses have
the same state of polarization), the polarization controller (PC)
inserted in one of the interferometer arms has to be adjusted such
that the transfer matrix of the short arm is equal to the transfer
matrix of the long one. Note that using a standard mirror in place
of the FM , an additional PC would be required [4], making
the initial adjustment of the interferometer more difficult. More-
over, both PCs would have to be readjusted for every new FUT.
With the FM instead, the interferometer does not require any
adjustments after its initial calibration.

In our measurement, the PC was adjusted once for all such
that all the light was directed toward detector D1, when no non-
linearity is present (i.e., no FUT is present and at low input
power). The detected power at the exit of the interfer-
ometer then becomes

(2)

where corresponds to the pulse power at the entry of the cou-
pler, and corresponds to the nonlinear phase shift acquired
along a double pass of the FUT [4]

(3)

TABLE I
VALUES OF THENONLINEAR COEFFICIENTn =A FOR DIFFERENTTEST

FIBERS MEASUREDWITH THE METHOD PROPOSED INTHIS LETTER (COLUMN

A) AND AS MEASURED BY OTHER INSTITUTIONS (COLUMN B). FOR THE

VALUES MEASUREDWITH OUR METHODS, THE MAXIMUM ABSOLUTE

DEVIATION FROM THE AVERAGE (MD) IS USED TO CHARACTERIZE

THE REPRODUCIBILITY

For the values measured at NTT [7]the standard deviation is shown. For the
values obtained by the NIST round robin [9] the standard deviation among dif-
ferent participants is reported

Fig. 2. Detected interference signal power as a function of launch power: (open
circles) measured data, (solid line) theoretical fit (2).

Detector D2 is used to measure the power at the entry of the
FUT.

III. RESULTS

was measured for five different fibers comprising
SMF, DSF, and DCF of different lengths. The fibers’ parame-
ters are listed in Table I.

Fibers DSF-1 and DSF-2 were also measured at NTT [7]
utilizing the SPM-based continuous-wave (CW) dual-fre-
quency (DF) method [5], [8]. Fibers NIST-B and NIST-C were
measured by six different institutions using the CWDF method
and the pulsed method using different fiber lengths and laser
wavelengths. Results regarding this North American round
robin were published in [9].

A typical result for a single measurement with our method is
shown in Fig. 2. The FUT was Fiber G-1 with a fiber length of
2231 m. The interference signal power detected at the exit of
the interferometer is plotted as a function of the launch input
power P. The experimental values (open circles) are increasing
almost linearly in the beginning, demonstrating that nonlinear
effects are of little importance up to launched powers of about
0.5 W. Then they set in quite heavily, and the measured power
eventually starts to decrease with increasing launch power. The



VINEGONI et al.: MEASUREMENTS OF THE NONLINEAR COEFFICIENT OF STANDARD SMF, DSF, AND DCF FIBERS 1339

Fig. 3. Nonlinear coefficient measured for different lengths of the same fiber
(G-1).

maximum of the interference signal power is reached at a launch
power of 0.8 W, whereas a null value, corresponding to a full

nonlinear phase shift, is obtained for 1.9 W. From this value,
can be calculated using (3). However, we always fitted

all the points as the precision is much better.
For each fiber, three to four different measurements were

taken on different days in order to test the reproducibility of our
method. The corresponding results are summarized in column A
of Table I. Note that the maximum absolute deviation from the
average (MD) is used to characterize the reproducibility. Gener-
ally, the reproducibility is quite good (10%) although it varies
somewhat from fiber to fiber (see Table I). Column B of Table I
reports the values found by the other laboratories. For the NIST
fibers [9], the standard deviation among the values of
the six different round robin participants is given. As one can
see the agreement with our values is quite good (with a devia-
tion 15% in the worst case). For the NTT fibers [7], the stan-
dard deviation of different measurements (using the same mea-
surement method) is given. Once more, the agreement with our
values is good ( 5%). For all measurements of both the NIST
and NTT comparison, the deviation of our values are within the
error bars.

When looking at the maximum deviation of our measure-
ments, it is striking that for the NIST-C fiber the value is much
larger. A reason for this might be that the GVD in this DCF
fiber is much higher. In fact, some methods [5] were found to be
very sensitive to the fiber’s length for large values of the chro-
matic dispersion. Therefore, it is interesting to analyze the re-
producibility of our method in a large GVD fiber as a function
of the fiber length.

Consequently, we made cutback measurements of
for a SMF (G-1) changing the length from 12 to 2 km. For each
length, at least three measurements were taken. The results are
reported in Fig. 3. The overall standard deviation is only 6%,

i.e., a similar amount as the maximum fluctuations for a fixed
length (see Table I). Also, no trend of the values as a
function of fiber length can be found, demonstrating that our
method is insensitive to the fiber length (in a range of around 10
km) even for large values of chromatic dispersion.

IV. CONCLUSION

In this letter, we have presented a simple and stable method
for the measurement of the nonlinear coefficient based
on an all-fiber self-aligned interferometer. Due to its robustness
against environmental perturbations, and its ease of adjustment,
the proposed method is well suited to routinely measure the non-
linear coefficient. The presence of the FM allows to easily ex-
change the FUT without necessitating any further readjustments
of the interferometer.

An interlaboratory comparison of the measurements
on the same test fibers showed good agreement of our results
with the others. Moreover, our method seems to be independent
of the fiber’s length on a range of 10 km even in the presence
of large GVD, known to cause problems with some of the other
measurement methods.
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Frequency Domain Reflectometer
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Abstract—For critical Erbium-doped fiber amplifier (EDFA) de-
sign, e.g., gain tilt optimization in WDM booster amplifiers, know-
ledge of the gain distribution within the active fiber can present a
valuable information. Among the different techniques to evaluate
the distributed gain in active fibers, the technique of optical fre-
quency domain reflectometry seems most promising as it is a non-
destructive measurement method well matched to the task due to
its dynamic range, resolution, and range. Moreover, background
light from ASE or residual pump light is strongly rejected due
to the coherent detection scheme employed. Using different Er-
bium-doped fibers with strongly varying doping levels and confine-
ments, we demonstrate the excellent accuracy and reproducibility
of the technique.

Index Terms—Fiber optics amplifiers and oscillators, metrology,
nondestructive testing.

I. INTRODUCTION

T HE ERBIUM-DOPED fiber amplifier (EDFA) is one of
the key components for the tremendous, fast pace progress

in optical telecommunication. Do to its high efficiency, large
output power, low noise figure, and compactness, it found its
way into diverse applications at different locations in the optical
network [1].

In order to exploit the EDFA capabilities to a maximum, the-
oretical models were soon developed for further optimization of
the EDFAs [2], [3]. Although these different models proved as
a valuable tool for the proper tuning of parameters like the Er-
bium ion density and doping confinement, they are typically not
capable of predicting important parameters like the distributed
gain or optimum fiber length to better than 15% for a specific
experimental configuration [2]. This point will be further ad-
dressed in the paper. The problem stems on one hand from
the fact that models are never perfect as they frequently ne-
glect some aspect of the gain dynamics for the sake of sim-
plicity, e.g., inhomogeneous gain broadening, the number of
levels, transverse space integrals, ASE spectrum, etc. [2]. The
more important point, however, is that the input parameters for
the models can frequently not be measured with a sufficient ac-
curacy. Therefore, several methods to directly measure the gain
distribution have been proposed and demonstrated. Cut-back
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methods are expensive and time consuming, and are not appli-
cable for the measurement of the gain distribution in backward
or bi-directionally pumped fibers. Nondestructive methods are
consequently advantageous. Using an optical time domain re-
flectometer (OTDR) with additional ASE filtering, distributed
gain curves were obtained [4]. However, the limited dynamic
range and spatial resolution (due to the large minimum mea-
surement distance in the order of a kilometer) of OTDRs make
it a bad match to measure the gain distribution in typical Er-
bium-doped fibers (EDF) with lengths of some tens of meters.

Recently, we reported on distributed gain measurements
using an optical frequency domain reflectometer (OFDR) [5].
The OFDR is ideally suited for this type of measurement, as
its range, resolution, and dynamic range match well with the
required values [6], [7]. Further, due to the coherent detection
used in the OFDR, disturbing ASE light is largely rejected.

In this paper, an improved OFDR with better resolution, ac-
curacy, and stability is used to give good quantitative results for
the gain distributions in different types of EDF at 1550 nm. The
reproducibility and accuracy of the distributed gain measure-
ments are investigated carefully and compared to traditionally
measured results using the cut-back method.

II. CHARACTERISTICS OF THEIMPROVED OFDR

The OFDR technique (Fig. 1) is based on the detection of
a beat signal between the distributed reflections from the fiber
under test (Rayleigh backscatter, connectors, etc.) and a fixed
Fresnel reflection (local oscillator). Using a specific linear fre-
quency sweep of the laser source, one can straightforwardly map
the measured beat frequencies on a distance scale, whereas the
normed square power for a given beat frequency gives the re-
flectivity at the corresponding distance.

For a good overview of the OFDR principles and limits, the
reader is referred to [6]. In the device used for the measurements
presented here, several important improvements have been im-
plemented. First, a different laser source with a much higher co-
herence length (about 3 km, bandwidth of 10 kHz) is used [8].
The coherence loss leads to a drop in the Rayleigh backscat-
tering level of only about 0.15 dB after 30 m, making a cor-
rection of the measured gain curves as in [5] unnecessary. The
accuracy of the reflectivity values has been greatly increased by
adopting a polarization diversity detection scheme. This assures
that the measured reflectivities are independent of the state of
polarization of the reflected light—which changes as a function

0733–8724/00$10.00 © 2000 IEEE
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Fig. 1. Sketch of the experimental setup.

of the location of the reflector down the fiber and the fiber beat-
length [9]—to within 0.5 dB. Note that this value is an upper
limit corresponding to the maximum signal deviation, observed
when purposefully varying the polarization state in front of a
reflector. Assuming a Gaussian probability distribution with a
confidence level of 99% for the measured maximum deviation,
the typical accuracy becomes 0.25 dB. Further, the spa-
tial resolution (FWHM of a distinctive reflection peak) was en-
hanced to 2 cm (30 m range), with a peak location accuracy of
a mm.

The OFDR can easily measure the Rayleigh backscattering
due to its sensitivity of 120 dB, and the distributed gain in an
EDF can be directly measured within 30 s. During the backward
path of the reflected light, gain saturation is the same as during
the forward path due to the extremely slow gain dynamics of the
Erbium ions ( 1 ms, [2]). The measured Rayleigh light there-
fore undergoes twice the gain (or loss), and the corresponding
decibel-values have to be divided by two to get the physical
quantity of interest. Note that if the single forward trip gain is
to be measured, one has to be careful to avoid strong backre-
flections after the active fiber (which in an EDFA is ensured by
the exit isolator), as the reflected light could saturate the gain.
Using an analytic model for the EDF gain [10], we found that
for a 25 dB gain, 30 m long fiber backreflections do not add to
gain saturation in a significant way (gain reduction of less than
0.5 dB) as long as they are kept below40 dB.

III. EXPERIMENTAL RESULTS

In all the following measurements, a wavelength division
multiplexer (WDM) was inserted between the OFDR test
output and the EDF to feed the 1480 nm pump radiation
into the active fiber. This corresponds to a forward pumping
scheme, but the measurements could be done as easily for
backward or bi-directional pumping. For the case of a large
part of nonabsorbed pump light exiting the fiber, additional
filtering might however be necessary for the latter pump set-ups
to remove the backward travelling pump light. This is because
noncoherent light reaching the OFDR can saturate its detectors
and also leads to a somewhat enhanced noise background.

A standard fiber with a low end reflectance (65 dB) was
spliced to the output end of the active fiber in order to avoid
backreflections into the EDF as much as possible.

In order to investigate the accuracy and reproducibility of the
measured distributed gain curves from the OFDR we performed
several measurements using different fibers and pump powers,

and compared them with the gain values obtained from direct
transmission measurements using the cut-back technique.

Fig. 2 shows the results for a fiber with a 2000 ppm Er doping
level and a length of about 1 m. The lines correspond to the dis-
tributed Rayleigh backscattering as measured by the OFDR. The
OFDR probe power was held constant at10 dBm, whereas
the pump power was gradually changed from no pump at all to

15.2 dBm. Due to the constant input signal, the Rayleigh level
is about the same in front of the active fiber that starts at 7.9 m,
in spite of the increasing level of backward ASE light. Note that
the fluctuations in the backscattered signal is not due to a noisy
measurement, but is caused by interference among the different
Rayleigh scatterers (“coherent speckle”). The curves shown in
Fig. 2 were smoothed by dithering the center frequency of the
OFDR by 0.5 nm and averaging (50 samples). As the fiber
was not moved between the consecutive measurements, the re-
maining interference pattern should not change significantly,
which was indeed the case as demonstrated by the figure. At
the beginning of the active fiber, a distinctive jump of 8.7 dB in
the Rayleigh level can be observed (unfortunately, it is some-
what covered by a Rayleigh peak). This is a known phenom-
enon due to the often larger numerical aperture (NA) of the
EDF, leading to a larger capturing of the Rayleigh scattered light
that is emitted in sr (signal power NA [2, ch. 5.8]. As a
byproduct, the OFDR curves therefore give a good idea of the
amount of possible NA mismatches, which lead to deteriorating
internal reflections and losses that can increase the noise figure
(input loss) or saturate the gain (reflections) and should conse-
quently be avoided as much as possible.

Looking at the curve within the active fiber (7.9–8.8 m) for a
switched off pump, one observes an exponential decay (linear on
a decibel scale). It corresponds to the expected 1550 nm absorp-
tion of the Er ions in the active fiber, which is calculated from
the slope to a value of 62 dB/m. For pump powers larger than
about 9.6 dBm, the backscattered signal initially grows, indi-
cating that the fiber is inverted leading to some gain. The figure
shows that the location of the maximum gain strongly depends
on the pump power. For a full pump of 15.2 dBm e.g., an am-
plification of 6.3 dB is obtained after 25 cm. After that distance,
the fiber is no longer inverted because of pump depletion, and
strong signal re-absorption takes place. For a distance of more
than 70 cm, the remaining pump power is so small that the signal
decays once more with a rate of about62 dB/m.

A cut-back measurement was performed to obtain directly
the transmission through different lengths of the active fiber.
The same input signal power of10 dBm and the same pump
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Fig. 2. Analysis of a forward pumped 2000 ppm Er-doped fiber with a length of 1 m. Solid lines: reflectivity traces as measured by the OFDR for pump powers
from zero pump (bottom curve) to+15.2 dBm (top curve). Straight lines: guide to the eye of the linear absorption below the OFDR noise level. Dots: measured
transmission values from traditional cut-back measures. The signal input power was held constant at�10 dBm.

power levels we used for the OFDR measurements were applied
to assure the same saturation behavior. As there is some part of
ASE light in the active fiber output, we calculated the transmis-
sion values by comparing the input and output optical spectra
on an OSA allowing for easy ASE subtraction. The obtained
transmission values, doubled (decibel-values) and referred to
the fiber input Rayleigh level and location, are shown as dots in
Fig. 2. Lines were introduced to indicate the linear decay of the
OFDR traces below the instrument noise floor of about116
dB for better comparison to the measured cut-back transmission
values. As can be seen, the correspondence of OFDR and trans-
mission measurements is rather good, clearly demonstrating the
proper working of the OFDR for distributed gain measurements.
It has to be noted that the presented measurement is a rather
rough test with power levels changing at a rate of up to123
dB/m—nevertheless, the gain value correspondence is typically
better than 1 dB.

Fig. 3 shows results for a 3.8-m-long fiber with a 500 ppm Er
doping level. Note that the scales have been adjusted in such a
way that 0 m/0 dB is located at the input of the fiber, and the
measured gain values have been divided by half (in decibels)
to give the correct single trip gain values. The solid lines give
the OFDR curves obtained for different pump powers and an
input power of 11 dBm, whereas the dashed set of curves was
obtained for the same pump powers, but for an even larger input
signal power of 5 dBm.

Although there is a small reflectivity peak at the beginning of
the active fiber, there is practically no difference in the Rayleigh
backscattering level at the standard fiber-active fiber transitions.
Apparently, the active fiber NA closely matches the one of the
standard fibers. The fiber attenuation is8 dB/m, and for the
maximum pump of 15.2 dBm an overall gain of 14.7 dB is ob-
tained for an input signal of 11 dBm. Fig. 3 shows that the
gain values obtained from the conventional transmission mea-
surements (dots and triangles for11 dBm and 5 dBm input
signal power, respectively) are all in excellent agreement with

the OFDR values. The agreement is better than 0.5 dB in the
presented measurement, which is close to the accuracy of the
OFDR—the mismatch is probably rather due to uncertainties in
the traditional measures anyway.

The gain reduction due to the 6 dB signal input power increase
is correctly predicted, demonstrating that the go and return path
gain are indeed the same, allowing for exact OFDR measures in
a strongly saturated gain regime.

The good reproducibility of the OFDR measurements is
shown in Fig. 4. There, the distributed gain was first measured
on a 300 ppm-doped Er fiber with a length of 6.3 m. The
fiber was then cut down to 2.3 m, and the gain distribution
was again measured for the same pump powers. As the figure
demonstrates, the curves are overlying well. The attenuation for
this fiber is 2.5 dB/m, and for an input power of5.6 dBm,
practically no gain saturation is observed for maximum pump
power.

Comparing the attenuation rates of the three fibers
[ 62 dB/m (2000 ppm), 8 dB/m (500 ppm), 2.5 dB/m
(300 ppm)], one observes that they do not scale with the
doping level. One reason might be that different co-doping
concentrations could have been used for the different fibers.
More plausible however is that the confinement factor [2] of
the Er doping was different. An indication for this is that the
NAs, and with that the signal beam extent, were different in
the different fibers as is illustrated by the different amounts of
the Rayleigh backscattering: whereas it was enhanced for the
2000 ppm (Fig. 2) and the 300 ppm fiber (Fig. 4), the 500 ppm
fiber (Fig. 3) showed about the same backscattering level as a
standard fiber. Assuming a very low co-dopant concentration
and step doping profiles, the confinement factor can be calcu-
lated straightforwardly for the different doping concentrations
and attenuation rates [2]. It amounts to 0.65 (2000 ppm), 0.46
(500 ppm), and 0.31 (300 ppm). Apparently, in the fibers with
a lower doping concentration, a stronger confinement of the
Er-ions was used.
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Fig. 3. Distributed gain curves in a 500 ppm Er-doped fiber for pump powers from zero pump (bottom curves) to+15.2 dBm (top curves). Lines: distributed gain
calculated from OFDR traces for a signal input power of�11 dBm (solid line) and�5 dBm (dotted line), solid dots and triangles: directly measured transmission
values through the Er-fiber. Note that because the gain (and not signal power) is shown, the apparent OFDR noise limit is increased by 6 dB for the set of lower
signal input power (lower SNR).

Fig. 4. Demonstration of the reproducibility of the OFDR measurements using a 300 ppm Er-doped fiber, an input signal power of�5.6 dBm, and different pump
powers. Lines: distributed gain calculated from OFDR traces for fiber lengths of 6.3 m (solid line) and 2.3 m (dotted line).

IV. A W ORD ON THEMODELING OF THEGAIN DISTRIBUTION

In the introduction, it was mentioned that the accuracy of
models for the gain distribution is typically not very good due
to a lack of knowing precisely enough the diverse parameters
involved. Having seen the excellent precision and repeatability
of the OFDR measurements of the distributed gain, we can now
illustrate this point more concretely.

A simple analytical model that neglects excited state absorp-
tion (which is absent for 1480 nm pumping) and gain satura-

tion caused by ASE is used [10]. It is applicable for moderate
gains up to about 20 dB. The model is therefore perfectly appli-
cable for the measurement using a 12 m long 500 ppm Er-doped
fiber, which gives a maximum gain of 13 dB for full pump power
[Fig. 5(b)]. In order to obtain the necessary model parameters,
the small signal absorption and input saturation power were
measured both at the pump and signal wavelengths. This can be
done on any length of the same active fiber used for the OFDR
measurements [10]. Fig. 5(a) shows such a measurement for the
signal wavelength of 1550 nm. Using the measured parameters
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(a)

(b)

Fig. 5. Modeling of measured gain distributions from a 12-m long 500 ppm Er-doped fiber. (a) signal transmission measurement through an unpumped, 1.5-m long
piece of the same fiber for model parameter determination. Crosses: experimental values, lines: calculated transmission using different sets of model parameters
(see text for details). (b) Gain distribution. zig-zag lines: measured, smooth lines: modeled using the same sets of parameters as in (a).

and the signal and pump input power used in the OFDR mea-
surements, a gain distribution as shown in Fig. 5(b) for full and
zero pump power can be calculated in an easy and rapid way.

The problem however is that the obtained gain distribution
strongly depends on the measured parameters. The three dif-
ferent gain distributions for maximum pump power shown in
Fig. 5(b) were obtained in the following way. For the solid line,
a point measure of the small signal attenuation and saturation
power [i.e. measuring the attenuation for a low input power, and
measuring the input power for which the absorption is bleached

by a factor e (4.34 dB)] has been used. For the dashed line, a
fit to the transmission measurements [shown in Fig. 5(a) for
the signal wavelength], was used. Finally, the dotted line is a
“fit” to the measured OFDR gain curve obtained by manually
varying the small signal absorption and saturation values en-
tering the model. As can be seen from Fig. 5(a), where the cal-
culated transmission curves using the three mentioned sets of
parameters is shown, all three sets match well with the mea-
sured data (crosses), and the differences between the sets are
quite small (even smaller for the pump wavelength not shown
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in the figure). Nevertheless, these small differences lead to pre-
dictions of the gain distribution with strongly varying maximum
gain (9.4–14.2 dB) and maximum gain locations (4.7–5.3 m).
Moreover, for the curve that matches best, there is still some
difference in the shape of the modeled gain distribution to the
real one as measured by the OFDR, demonstrating the difficulty
to find the correct input parameters for the model.

To predict the maximum gain and especially the maximum
gain location in a concrete, critical EDF set-up, it is therefore
very useful to have a tool like the OFDR to accurately measure
these parameters in a simple and rapid way.

V. CONCLUSION

Using optical frequency domain reflectometry, distributed
gain measurements in Erbium-doped fibers have been per-
formed. The OFDR used is ideally suited for this type of
measurement due to its sensitivity (120 dB), resolution (2 cm
at 30 m), and range (150 m). The coherent detection leads to
a high background light suppression, and ASE from the active
fiber is efficiently rejected. The accuracy and reproducibility
of the measured gain distributions has been demonstrated
using EDF with strongly varying doping levels and doping
confinements. The results were found to be in excellent
agreement with traditional cut-back measurements, typically to
within the OFDR accuracy of about 0.25 dB. As a byproduct,
possible mismatches between the NA of the active fiber and the
preceding/following fibers are detected.

Comparison of the measured OFDR curves with an adequate
gain model is confirming the difficulty in reproducing the exact
gain distribution for a specific situation due to a lack of accu-
racy in the model input parameters. This clearly points out the
importance of being able to accurately measure gain distribu-
tions in a rapid and nondestructive way.
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Abstract—Exploiting the inherent polarization dependence and
good spatial resolution of optical frequency domain reflectometry
(OFDR), the beatlength in a ribbon fiber can be straightforwardly
measured. The results clearly show the different amount of po-
larization ordering for inner and outer ribbon fibers due to the
stress-induced birefringence from the common outer coating.

Index Terms—Birefringence, fiber metrology, optical fiber rib-
bons, optical reflectometry, polarization-mode coupling.

I. INTRODUCTION

F IBER ribbons, where the individual fibers are densely ar-
ranged in a common outer coating, can present a popular

low-cost solution—mainly for access networks—because of the
possibility of mass splicing. With the bit rates ever increasing
down to the end user, polarization-mode dispersion (PMD) of
these fibers is becoming an issue. Several studies [1]–[4] address
this topic, and often a different polarization evolution was found
in the inner and outer fibers of the ribbon. For the four-fiber
ribbon used in [4], e.g., the PMD was three times larger for the
inner fibers than for the outer ones. A possible explanation is the
birefringence induced by the stress of the ribbon itself. A finite
element method was used in [4] to model the stress distribution
within the ribbon, and the corresponding induced birefringence
was found to be larger for the inner fibers by a factor of three as
well.

The influence of a uniform external perturbation (usually of
fiber twist) on the polarization evolution in an ideal fiber having
a uniform, constant intrinsic birefringence and no polarization
coupling has been investigated long ago [5]. In a real fiber, how-
ever, the intrinsic birefringence has random relative orientations
of its (local) birefringent axes leading to polarization-mode cou-
pling. In fiber ribbons, it is on such fibers that the external
stress from the common coating is acting, and it is therefore
not a priori clear to what extent the induced stress birefrin-
gence will change the polarization evolution (namely the polar-
ization-coupling length). These points are clarified in this paper
using high-resolution coherent optical frequency domain reflec-
tometry (OFDR) measurements [6].

II. EXPERIMENTAL SETUP

The OFDR technique (Fig. 1) is based on the detection of
a beat signal between the distributed reflections from the fiber
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The authors are with the Group of Applied Physics, University of Geneva,

CH-1211, Geneve 4, Switzerland.
Publisher Item Identifier S 1041-1135(01)01048-5.

Fig. 1. Sketch of the OFDR setup.

under test (Rayleigh backscatter, connectors, etc.) and a fixed
Fresnel reflection (local oscillator). Using a linear frequency
sweep of the laser, one can straightforwardly map the measured
beat frequencies on a distance scale, whereas the normed square
power for a given beat frequency gives the reflectivity at the
corresponding distance. The polarization dependence of the co-
herent detection used in the OFDR can be exploited to get in-
formation about the evolution of the polarization state along the
fiber [6], [7]. For a good general overview of the OFDR princi-
ples and limits, the reader is referred to [8], [9].

In the device used for the measurements presented here, sev-
eral important improvements have been implemented. A po-
larization-diversity detection allows to subtract the (polariza-
tion-independent) Rayleigh structure from the polarization-de-
pendent channel, thereby removing the frequencies that are not
related with the fiber birefringence. Along with the greatly en-
hanced range (2 km) and two-point resolution (0.08% of the
range, i.e., 5 mm for a range of 6 m, 1.5 m for 2 km), this allows
for precise measurements of the polarization evolution.

III. RESULTS AND DISCUSSION

The fiber ribbon analyzed here consists of four fibers. Its
length is 1.5 km, loosely spooled on a drum with a diameter
of 35 cm.

First, PMD was measured both with the Jones matrix eige-
nanalysis (JME) and the interferometric method. The results
are summarized in Table I. The inner fibers have a consistently
larger PMD than the outer ones, the difference being as large
as a factor of 3.6. As predicted by the model in [4], we found
the DGD to vary more for the inner fibers between the mea-
surement series done at different times during the day (different
temperatures).

1041–1135/01$10.00 © 2001 IEEE
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TABLE I
PMD, BEATLENGTH, AND COUPLING LENGTH FORINNER AND OUTER FIBERS

Fig. 2. Reflected signal and spectrum for an outer fiber.

We then used the OFDR to analyze the polarization evolution
in the four different fibers. Fig. 2 shows the polarization-de-
pendent reflections from an outer fiber, after removal of the
Rayleigh noise and normalization-to-zero mean power. This
curve is then Fourier transformed to get information about the
rotation period of the polarization vector, i.e., the beatlength.
The figure shows that there is not one specific, well-defined
beatlength period, but a distribution of such values. While
the structure of the peaks changes somewhat for different
launch polarizations, the mean value of the distribution is fairly
constant, giving a mean beatlength of about 4 m. The uneven
structure of the signal is typical for a low PMD, standard fiber
with a relatively short coupling length. The influence of the
ribbon stress is small, but still induces some ordering (e.g., at
distances around 10 m and 70 m in Fig. 2).

On the other hand, the situation is drastically changed for
the inner ribbon fibers. As is shown in Fig. 3, the backreflected
signal is now very regular, indicating a long coupling length and
well-defined birefringent axes induced by the larger external
ribbon stress. Accordingly, the Fourier transform now shows
a distinctive peak corresponding to [7], giving a beat-
length value of m. Consequently, the external stress
both enhanced the coupling lengthand the local birefringence.
It is interesting to note that when the fibers are torn out of the
ribbon, inner and outer fibers show the same characteristics. A
typical example is shown in Fig. 4. Comparing the spectrum of
the “free fiber” (Fig. 4) and the outer ribbon fiber (Fig. 2), one
observes that the two strong low-frequency components, corre-
sponding to an intrinsic beatlength of about 55 m, are present

Fig. 3. Reflected signal and spectrum for an inner fiber.

Fig. 4. Reflected signal and spectrum from a “deribbonized” fiber.

in both cases. For the outer ribbon fiber, there are, however, ad-
ditional peaks due to the stress-induced birefringence, demon-
strating that in that fiber intrinsic and induced birefringence are
of similar magnitudes.

The coupling lengths for inner and outer fibers can
be determined more precisely by using the measured PMD
(Table I) and beatlength values and applying the well-known
relation , valid for fibers where the fiber
length . The obtained coupling lengths are 36 m
for the inner, and 9.5 m for the outer fiber (see, also, Table I),
confirming the qualitative observations given above. These
findings are also in good qualitative agreement with those
reported in [1].

IV. CONCLUSION

Using high-resolution coherent optical frequency domain
reflectometry, the polarization evolution in fibers of a ribbon
cable have been straightforwardly measured. The reflected
signal for inner ribbon fibers shows a well-defined, regularly
varying structure. This demonstrates that the ordering from
the external stress, induced by the common ribbon coating,
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is important. Consequently, a small beatlength and a large
coupling length were obtained. For the outer ribbon fibers,
the signal variations were more random, indicating that the
externally induced stress birefringence is of the same order
than the intrinsic one.

The measurements further point out that for long-range appli-
cations of fiber ribbons, a careful design of the common coating
is important, as PMD values as large as 0.4 ps/km are other-
wise experienced.
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Abstract : We have developed a new system combining near-field scanning optical mi-
croscopy (NSOM) with single photon detection operating at the wavelength of 1.55 µm. The
microscope was used in order to image the splice region between a standard telecom and an
Erbium doped fiber. The excellent sensitivity also allowed to detect the Rayleigh scattered light
of a standard fiber coming out laterally through the fiber cladding.
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distribution, is obtained from measurements and modeling of the nonlinear polarization rota-
tion in optical fibers. Results for different types of fibers are presented.
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INTRODUCTION 

It is well known that single-mode communication fibers are birefringent and that 

the orientation and the amount of birefringence is randomly distributed along the 

fibers. The corresponding polarization mode dispersion (PMD) becomes 

therefore a statistical quantity, and not only its mean value but also its probability 

distribution is important to assess the inferred system impairments. This 

distribution depends on two parameters: on the (mean) local birefringence B and 

on the coupling length h, which is the length over which the E field loses memory 

of its initial distribution between the local polarization eigenstates [1]. In fibers 

having a length L long compared to h, the probability distribution is Maxwellian 

with a mean PMD value of B, whereas for coupling lengths approaching the fiber 

lengths, the PMD statistics change considerably. In this paper we present a novel 

way to directly infer the polarization coupling length from measurements of the 

nonlinear polarization rotation (NPR) of the fiber.  

We demonstrate too that NPR is present non only in polarization maintaining 

fibers [2] but even in standard single mode fibers. The resulting nonlinear change 

in the light’s state of polarization (dependent on both the channel power and the 

coupling length) can affect, on long transmission links, the performances of 

polarization demultiplexing schemes and of first order PMD compensation. 
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PRINCIPLE OF OPERATION 

 

In a dielectric medium, an intense elliptical input pulse induces birefringence – 

via the optical Kerr effect - due to the different amounts of intensity along the 

major and minor axis of the polarization ellipse. In an isotropic medium this self-

induced birefringence leads to polarization ellipse self-rotation. In an optical fiber 

however, the situation is more complex due to the presence of the local intrinsic 

birefringence. The polarization changes are hard to predict in that case as the 

linear and nonlinear birefringences interact in a complicated manner. In general, 

the linear birefringence will however be much larger than the nonlinear one, and 

the evolution of the polarization vector ψ in a polarization maintaining fiber can 

then be approximated by [2]: 

ψσω≈ψ∂ θeffz Bi   (1) 

where σθ accounts for the linear birefringence with axis θ. The linear 

birefringence B is replaced by an effective birefringence Beff accounting for the 

nonlinear birefringence. The solution for Eq.1 is straightforward, and corresponds 

to a rotation of the input polarization vector around the linear birefringence axis 

σθ, with a rotation angle β given by 

zmBzBeff ))0(
2

( θ
αωωβ −==  (2) 
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where α = n2P/(3cAeff), n2 is the nonlinear Kerr coefficient, P the power, and Aeff 

the effective area. mθ(z) is defined as the projection of the input SOP on the 

birefringent axis at the position z along the fiber. In principle the NPR can now be 

measured by varying the input power P and observing the corresponding change 

in the output SOP.  

However, an inherent problem for this kind of measurements is the stability of the 

output SOP at the exit of the fiber, subjected to fluctuations of the much larger 

linear birefringence B due to temperature changes and drafts in the fiber 

environment. We have recently proposed a method for measuring the NPR [2] by 

removing the overall linear birefringence -and therefore also its fluctuations- in a 

purely passive way by employing a Faraday mirror (FM) [3] and a double pass of 

the fiber under test. Doing so, the nonlinear birefringence (leading to NPR) was 

shown to remain unaffected, i.e. the NPR of the forward and backward paths add 

up [2]. In this way we can measure NPR both in polarization maintaining (PM) 

fibers and in standard fibers. However, the random variations of the intrinsic local 

birefringence existent in a standard fiber reduce the NPR. The situation becomes 

more complex, and we therefore resort to numerical simulations. The fiber is 

modeled as a concatenation of linearly birefringent trunks with a physical length 

LC kept constant. Concerning the birefringence, its strength is fixed and the 

orientation is allowed to vary driven by a white noise process gθ(z) characterized 

by a dispersion σθ [1]. For each single trunk, Eq.2 is used to calculate the output 

SOP from the input one, with the input SOP calculated from the output SOP of 

the previous trunk. The SOP can therefore be calculated piece by piece, with the 
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projection mθ being different for each new trunk. The final SOP will depend on 

the choice of the birefringence axis orientations, with variations being larger for 

large values of LC. We therefore made 200 runs for each specific coupling length 

to get a mean value of the NPR. 

 

 
 
 

EXPERIM ENT 

 

The experimental setup for the measurement of the NPR for the different test 

fibers is shown in Fig.1. The light source consists of a distributed feedback laser 

(DFB) operated in pulsed mode at a wavelength of 1559 nm. Typically, pulses 

with a duration of 30 ns, a repetition rate of 1 kHz, and a peak power of up to 6 W 

(after amplification by an EDFA) are used. The light is then launched into the 

fiber under test (FUT) via a 90/10 coupler and a polarization controller (PC1). 

The coupler is inserted for the detection of the backward traveling light after the 

double pass of the FUT, with its 90% output port connected to the source in order 

to maintain high launch powers into the FUT. The polarization controller, PC1, 

allows to adjust the polarization of the light launched into the FUT, i.e. mθ which 

is important for the strength of the NPR as demonstrated by Eq.2. Note that for 

low launch powers (negligible NPR), the action of PC1 is removed by the 

Faraday mirror, and its setting is therefore of no importance in that case. The 

output SOP is examined by an analyzer consisting of a polarization controller 
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PC2 and a polarizing beam splitter (PBS). To achieve a good sensitivity of the 

analyzer, it is calibrated for equal power in the two PBS output arms for low 

power launch signals where no NPR occurs. The two PBS output channels were 

monitored by a fast photodiode (200 ps response time) and a sampling scope. 

The measurements were then performed in the following way: for a given launch 

power, the polarization launched into the FUT was adjusted (PC1) to give the 

smallest possible output power at the monitored PBS channel. Consequently, the 

difference between the two PBS output channels is maximized, corresponding to 

a maximum value of the NPR. 

 

 

RESULTS AND DISCUSSION 

 

We first measured the NPR in a PM fiber with a length of 200 m. The results 

shown in [2] indicate that the effect of NPR is negligibly small up to about 0.5 W. 

For higher lunch powers, NPR manifests itself with a reduction of the power in 

the monitored PBS channel. In fact, its action becomes so strong that for launch 

powers above about 2.5 W, the output power starts actually to decrease in spite 

of the linear increase that would be experienced in the absence of NPR. The 

measured data agree well with our model, in which mθ(0) was varied in order to 

give a minimum output power from the PBS channel like in the experiment, and 

only one fiber trunk was used (LC = fiber length L).  
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Numerical results for different values of LC (keeping fixed the total fiber length) 

show that NPR is reduced for a larger number of couplings resulting in a more 

and more linear dependence of the output from the input power. This reduction is 

due to the increased probability that the NPR action in one trunk is compensated 

for by another. These theoretical predictions were then compared to 

measurements made on different standard fibers (see Tab.1). The fiber lengths 

were typically 1 km (simulations were adjusted accordingly to each fiber length 

and n2/Aeff coefficient). Fig.2 shows the results for 3 standard fibers with large 

(fiber B) and small PMD (fiber A,C), respectively. The three standard fibers 

clearly exhibit a different amount of NPR. The fitting of the experimental data is 

made with two free different parameters; the length of each single trunk of fiber 

LC and the dispersion σθ. Different combinations of their values can fit the same 

experimental data but in accordance with the definition of coupling length if the 

model is consistent the product  σ2
θ L/LC has to remain constant. This is shown to 

be the case for our data as shown in the inset of Fig. 2. Here LC is varying 

between 5 and 200 m and σθ between 10 and 70 degrees. 

The coupling length h defined as the length at which the fiber autocorrelation 

function <cos[θ(z) -θ(0)]> is equal to 1/e, can be shown to be equal to 2/σ2
θ . For 

the case in which each piece of fiber has a fixed length LC, it’s easy to show that 

h = 2LC/σ2
θ.  The simulations show that for the three different fibers the coupling 

length can be estimated to be about 160 m for the fiber A and 350 m for the large 

PMD fiber (fiber B). The coupling length of h~1000 m for the third ‘standard’ fiber  
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(fiber C) is quite large, indicating that there might be well defined birefringent 

axes in that fiber.  

The large values we found for the coupling lengts appear to be remarkably high, 

so we have successively made a different estimation for the coupling length of 

the same fibers, from PMD and beat length measurements using an Optical 

Frequency Domain Reflectometer (OFDR) [4].  The values we found in this way 

are of the order of tens of meters (see Tab.1) except for fiber C that even with 

this method presents a coupling length of the order of the entire fiber length. 

This difference in the estimated coupling length between the two methods is 

quite surprising so we tested the validity of our model in two ways. One, as 

mentioned before, consisted in fitting the experimental data using different 

combinations of the single trunk of fiber LC and the dispersion σθ (keeping the 

product σ2
θ L/LC constant). The inset of Fig.2 shows the consistency of the 

model.  

The other test consisted in demonstrating that the NPR will add even in the 

presence of a discontinuity in the linear birefringence (i.e. the fiber is a 

concatenation of two PM fibers spliced together, with a coupling angle different 

from zero) as is the case of our model. To prove this we considered two PM 

fibers connected together with a varying coupling angle θ. Depending on the 

value of θ, the amount of rotation will change (maximum when θ = 0, i.e. fiber 

aligned). The experimental data are in good agreement with the theoretical ones 

[5]. 
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From these tests it is not clear at this moment why the values of h we obtained 

with the nonlinear method are much higher compared with the ones calculated 

using the OFDR. We clearly showed that the h does play a major role in 

determining the strength of the NLR, although maybe it is not the only  one. 

 

CONCLUSION 

Measurements and a model of NPR in optical fibers were presented, allowing for 

direct determination of the polarization mode coupling length. Coupling length 

values of several 100 m were obtained for large PMD fibers, whereas it was as 

low as 160 m in state-of-the-art low PMD fibers.  Despite the demonstrated 

consistency of the model, a high discrepancy is present between the h values 

measured with the OFDR method and the nonlinear one. 

One SMF fiber (fiber C) presented an unusually extremely high coupling length in 

accordance with both the measurements methods.  

The presence of significant NPR in SMF fibers, even in the ones with short 

coupling lengths as measured from the OFDR method, can constitute a serious 

problem in particular for first order PMD compensation or polarization 

demultiplexing schemes. 
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CAPTIONS 

 

Fig. 1   Experimental setup of the NPR measurements. PG pulse generator, DFB 

distributed feedback laser, EDFA Erbium doped fiber amplifier, PC polarization 

controller, FUT fiber under test, FM Faraday mirror, PBS polarizing beam splitter 

 

Fig. 2  Minimum output power of PBS channel 1 as a function of the launched 

power for fibers A (open circles), B (full circles), and C (full squares). Symbols: 

measured data. Solid curve: prediction from our model. Dashed bold line: 

prediction in the absence of any NPR. Bold curve: PM fiber. The inset shows  the 

values of the calculated h for different �� and LC combinations giving curves 

that fit the experimental data for fibers A and B.  

 

Tab. 1 Parameters for the different fibers: total length, PMD, and beat length Lb. 

In the last two columns is reported the coupling length as derived from the 

measured beat length Lb and PMD, and the one estimated through the nonlinear 

polarization rotation. 
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FIGURE 1 
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FIGURE 2 
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TABLE 1 

 

 

 

 

 

 

 

 

Fiber  Length 

(km) 

PMD 

(ps/√√√√km) 

L b 

(m) 

h [OFDR] 

(m) 

h [nonlinear ] 

(m) 

A 1.5 0.05 12 15 160 

B 1.0 1.9 .5 47 350 

B* 1.0 0.05 20 43 350 

C 1.0 0.14 30 Fiber length Fiber length 
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Emulator of First- and Second-Order
Polarization-Mode Dispersion

M. Wegmuller, S. Demma, C. Vinegoni, and N. Gisin

Abstract—Contrary to approaches which try to mimic a stan-
dard fiber as closely as possible, the emulator presented here gives
constant (but user adjustable) values for differential group delay
(DGD) and ratio of first- to second-order polarization-mode dis-
persion (PMD). Once it is set, the ratio is conserved while the DGD
can be easily varied within a range of 0–300 ps. This allows to inves-
tigate the low-probability events of large DGD and second-order
PMD important for system outage.

Index Terms—Communication system testing, polarization-
mode dispersion.

I. INTRODUCTION

UPGRADING the existing telecom systems to high bit rates
( 10 Gb/s) leads to several problems. Already some time

ago, the impact of first- and second-order polarization-mode
disperison (PMD) in such systems has been analyzed [1], [2].
It was found that second-order PMD, i.e., the frequency de-
pendence of the principle states vector (PSP), can lead to
important fluctuations around the mean penalties induced by
first-order PMD. For the case of large values of the chromatic
dispersion, second-order PMD becomes in fact a major source
of performance degradation [1]. Moreover, with the advent of
PMD compensators, which typically compensate for first-order
effects only (leaving higher orders unaffected or even increasing
them), impairments due to accumulated second-order PMD are
to be expected [3].

Consequently, second-order PMD is an important issue for a
proper assessment of system performance and PMD emulators
should therefore not only include the first, but also the second
order. The emulators of today have the strategy to mimic as
closely as possible long standard fibers with polarization-mode
coupling [4]–[6]. They typically consist of pieces of highly bire-
fringent polarization maintaining (PM) fibers joint either by
splicing or by rotatable connectors. In the first type, the desired
Maxwellian pdf for the DGD is obtained by taking an ensemble
over a large wavelength interval. However, the wavelength de-
pendence of the PSPis usually not accounted for in a correct
way [4]. Using a fixed wavelength and changing the coupling
among the PM fibers (e.g., by changing the temperature or by
mechanically varying the birefringence axes directions of the in-
dividual trunks) to obtain a Maxwellian distributed DGD, there
are indications that second-order PMD could be quite well ap-
proximated [5]. However, a large number of trunks (15, [4],
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[5]) and a large number of different realizations are to be used.
This adds to the emulator complexity and measurement time.
Moreover, there are indications that the rare events of large DGD
values (tail of the Maxwell distribution) in these PMD emulators
can be orders of magnitudes smaller than the desired theoretical
values [7]—however, it is these large DGD events which are im-
portant for the system outage probability!

We, therefore, opt for a different approach, where the user can
set a constant value for the DGD and the ratio of DGD to instan-
taneous second-order PMD1 , independent of the wavelength.
Consequently, contrary to the other emulators, no statistics is
reproduced (we therefore have a “DGD emulator” rather than
a PMD one). The values for DGD and instantaneous second-
order PMD are known precisely without having to measure them
and can be experimentally linked to the corresponding system
penalty. In addition, our emulator also allows to simulate situ-
ations—like a first-order compensated system with low DGD
and large second-order PMD—not achievable in emulators that
mimic long standard fibers.

II. PRINCIPLE OFOPERATION

The emulator is based on two trunks of PM fiber, with a cou-
pling angle between their birefringence axes. The overall PSP

then becomes [8]

(1)

where are the PSP of the first and second trunk
with DGDs of and , respectively. Assuming that and

are independent of wavelength (a very good approximation
for PM fibers), one can straightforwardly calculate the overall
DGD and instantaneous second-order PMD

DGD

(2)

As one can see, both these quantities are constant with wave-
length. The derivative of the modulus of, which accounts for
about 1/9th of the total amount of second-order PMD in a long

1In the remainder of the letter, we use the following definitions and terms:

first-order PMD: ~
(!; t) , DGD: ~
(!; t) (varies with time)

second-order PMD: (@=@!)~
(!; t) , instantaneous second-order

PMD: (@=@!)~
(!; t) (varies with time).

1041-1135/02$17.00 © 2002 IEEE
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Fig. 1. Ratio of first- to second-order PMD, as a function of the coupling ratio
between two PM fibers with arbitrary, but equal DGD [as calculated from (2)].

Fig. 2. Experimental setup of the emulator for first- and second-order PMD.
The arrows indicate the light path during the forward pass of the emulator,
corresponding to the first PM fiber. All fibers in the setup are polarization
maintaining. PBS: Polarizing beamsplitter.

standard fiber [2], is therefore zero and the second-order PMD
vector becomes orthogonal to the PSP.

Due to the dependence of DGD and instantaneous second-
order PMD on the coupling angle(2), one can set a desired ratio

of the instantaneous second-order PMD to the DGD as is illus-
trated in Fig. 1 for two PM fibers having the same DGD. Note that
rather than the coupling angle, the coupling ratio has
been used as it is this value which can easily be measured for the
emulator adjustment. Note that the ratio is
conserved for any values of DGD, as long as they are the same for
both fibers. The situation of is, therefore, advanta-
geous and consequently employed in our emulator.

III. EXPERIMENTAL SETUP AND RESULTS

The experimental setup for the emulator is shown in Fig. 2. It
is nothing else than the analog to two PM fibers with adjustable
DGD and a coupling between them.

The parallel and perpendicular orthogonal polarization mode
of the input PM fiber are split at the first PBS, allowing to induce
a retardation (0–300 ps) on the orthogonal mode using a free
space delay line. The two modes are recombined at the second
PBS, again with the axes of the following PM fiber aligned. The

Fig. 3. Interferometric PMD measurements of the emulator for a fixed delay
line setting of 15 ps and couplings of# = 0 (top), 90 (middle) and 41
(� = 1=3). The power has been normalized so that the central peak is one and
the curves were offset vertically for clarity.

light trajectory up to the coupling, therefore, represents the
first PM fiber, with DGD . The polarization-mode extinc-
tion ratio at the second PBS was measured to be22 dB. The
loss up to the coupling point was3 dB for the lower arm and
1 dB for the upper arm. The difference can be explained by the
insertion loss of the delay line (1 dB) and a bad splice in the
lower arm. The loss of the upper arm was thereafter increased to
the value of the lower one. The second fiber (after the coupling
point) consists of the backward pass through the same polariza-
tion interferometer. Note that for the two “quasi-PM” fibers to
be aligned has to be set to 90. Therefore, in order to have the
same situation as for two real PM fibers with a coupling, one
has to use . The coupling ratio can be easily deter-
mined by adjusting the input light to themode (see Fig. 2) and
measuring the decrease in power when blocking the delay line.
Physically, the coupling was realized by inserting a polarization
controller with ultralow PMD (Lefèvre controller), but could be
achieved more conveniently using a rotatable connector.

In the first realization of the emulator [9], an important dif-
ference in the DGD of the forward ( ) and backward ( )
pass (analog to the first and second PM fiber) was found. As dis-
cussed in Section II, the ratio of DGD to instantaneous second-
order PMD was, therefore, no longer preserved as a function of
the delay line setting. The reason for the discrepancy between

and can in fact be easily understood by analyzing the
emulator for a setting of (i.e., ). The output for
that case should be , but is actually given by
the DGD of the empoyed PM fiber (per length) times the total
length through the emulator. This is because all the PM fibers
in the emulator are aligned: ainput light (see Fig. 2) will re-
main so throughout its path to the ouput and the same holds for

input light. is independent of the delay line set-
ting (which was also verified experimentally). It was nulled by
adding a PM fiber with reversed axes and the correct DGD to the
emulator output fiber. Fig. 3 shows interferometric PMD mea-
surements of the emulator for a delay line setting of ps
and different couplings of 0 (top), 90 (middle) and 41 (cor-
responding to the statistical case of for long fibers,
bottom). For , the corresponding peak gives .
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Fig. 4. DGD and instantaneous second-order PMD of the emulator as a
function of the delay line setting. The coupling ratio was fixed atcos ' = 0:3
(roughly corresponding to� = 2 � 1=3). Solid lines: Theoretical values.
Symbols: Measured values.

Fig. 5. DGD and instantaneous second-order PMD of the emulator as a
function of the coupling ratio. The delay line setting was fixed at 15.75 ps.
Solid lines: Theoretical values. Symbols: Measured values.

The measurement shows that a small difference of0.6 ps per-
sists because of a slight mismatch in DGD between the original
emulator and the PM fiber added to the output. However, this
difference is now too small to significantly change the ratioas
a function of the delay line setting. Fig. 3 further demonstrates
that for a coupling of , only a peak at
is obtained, whereas for nonaligned fiber axes, peaks at both
and 2 appear.

Fig. 4 shows theoretical (2) and measured DGD and instan-
taneous second-order PMD for a coupling ratio of 0.3 (corre-
sponding to ), as a function of the delay line setting

. The original standard Jones Matrix Eigenanalysis (JME)
method as presented by Heffneret al. [10] was used to extract
the PSP as a function of wavelength. For that purpose, the em-
ulator was put into a temperature-controlled box to keep the
output polarization stable with time. Using wavelength steps
adapted to the DGD and instantaneous second-order PMD [10],
a good agreement of the measurements (dots) and the model
(lines) was obtained.

Thereafter, we set to 15.75 ps (giving a DGD of 20 ps
for , which is about the tolerated limit in a 10-Gb/s link)

and varied the coupling ratio, i.e.,(Fig. 1 shows their relation-
ship). Fig. 5 shows these results and once more, a remarkable
agreement with the theory is found.

IV. CONCLUSION

A PMD emulator with adjustable DGD and ratio between
DGD and instantaneous second-order PMD was presented. Al-
though this emulator does not give any statistical output as real
fibers do, it allows even the better to evaluate the impact of low-
probability events of large (instantaneous) first- and second-
order PMD on the system under test.

The principle of operation is based on two PM fibers, where
the coupling between the two fibers sets the ratio of DGD to
instantaneous second-order PMD. By changing a variable delay
line, the emulator DGD can be easily varied from 0 to 300 ps
(while the ratio of DGD to instantaneous second-order PMD
is conserved). As the absolute wavelength does not enter the
game, the emulator operates in a very broad wavelength region.
The emulator performance was tested with JME measurements
and the experimental values for DGD and instantaneous second-
order PMD were found to agree well with the desired values set
by the operator.
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Distributed Measurements of Chromatic
Dispersion and Nonlinear Coefficient in

Low-PMD Dispersion-Shifted Fibers
C. Vinegoni, Hongxin Chen, M. Leblanc, G. W. Schinn, Member, IEEE, M. Wegmuller, and N. Gisin

Abstract—We report on the investigation of distributed chro-
matic dispersion (CD) and distributed nonlinear coefficient (NLC)
measurements based on phase mismatched four-wave mixing in
dispersion-shifted fibers (DSFs). Experimental results of the dis-
tributed CD maps for low polarization-mode dispersion (PMD)
DSF fibers are discussed. We also report how nonnegligible values
of PMD can adversely affect the distributed CD measurements. A
new method to measure the distributed NLC map in low-PMD DSF
fibers is also proposed and demonstrated experimentally.

Index Terms—Chromatic dispersion (CD), dispersion-shifted
fibers (DSFs), distributed measurements, four-wave mixing
(FWM), nonlinear coefficient (NLC), polarization-mode disper-
sion (PMD).

I. INTRODUCTION

OPTICAL nonlinearities play a significant role in con-
temporary fiber-optic transmission networks because of

the long distances and the high powers present in the optical
fibers. In fact, it is well known that nonlinear effects, such
as four-wave mixing (FWM) and cross-phase modulation,
may seriously affect optical transmission network systems, for
example, in dispersion-shifted fibers (DSFs). The efficiency of
these processes depends on both the chromatic dispersion (CD)
profile and the nonlinear coefficient (NLC) profile.
It is, therefore, highly interesting to have a nondestructive
technique that allows us to map these parameters as a function
of fiber distance in order to design ultrahigh capacity fiber-optic
transmission networks.

In this letter, we report on the investigation of distributed
CD measurements based on the method first proposed by Mol-
lenaueret al. [1], where we obtained a spatial resolution of
250 m with a high accuracy. The experimental results for the
case of fibers with low and nonnegligible values of polariza-
tion-mode dispersion (PMD), in particular in the presence of
high values of the polarization coupling length (i.e., the distance
over which the field of the travelling wave loses memory of
its initial distribution between the local polarization eigenstates)
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are also discussed. We found that, for nonnegligible values of
PMD that can typically be found in the old installed DSF ca-
bles, the method is severely limited and data elaboration needs
to be refined. At the same time, we propose and also experimen-
tally demonstrate, for the first time to the best of our knowledge,
a new method based on the aforementioned one to measure the
distributed NLC map in low-PMD DSF fibers.

II. THEORY

The optical time-domain reflectometer-like method for mea-
suring a distributed CD map is based on the detection of the
fringe periods of the Rayleigh back-scattered FWM signal, ei-
ther Stokes or anti-Stokes, generated from the fiber under test
(FUT), by injecting two powerful lights (pump and probe) with
powers and and frequencies and ( ). If
we focus on the FWM generated from the Stokes frequency

, the phase-mismatching is given by [1]

(1)

where . The above equation shows that the
phase-mismatching depends on both the local CD
(linear term) and NLC (nonlinear term). The Stokes signals
can also be expressed as a spatial intensity oscillation with pe-
riod . Thus, the temporal oscillation frequency in inten-
sity of the Rayleigh back-scattered light can be expressed as

(2)

If is satisfied, then the nonlinear term disappears and
a measurement of the local frequency provides information of
the local CD value versus fiber distance.

It is important to note that (1) does not take into account any
polarization-dependent effects. However, it is clear that the rela-
tive polarization states of pump and probe will vary according to
the PMD of the FUT. This change in their relative state of polar-
ization (SOP) can be characterized by the spatial correlation of
the pump and probe SOPs (and ) at the output of the FUT.

1041-1135/03$17.00 © 2003 IEEE
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When PMD is present, one finds [2] that the correlation between
pump and probe SOPs is proportional to
where is the overall PMD. This change in the relative
SOP has two consequences. First, the FWM efficiency(

) is polarization dependent. This implies that the
total detected signal oscillations correspond to the sum of the
Stokes signal—intensity oscillations related to the phase mis-
match (i.e., the local CD)—and an additional modulated signal
due to the change in the FWM efficiency by the PMD. However,
this effect is usually not important because the length scale of
this polarization-dependent fluctuation is normally very short
compared with the Stokes signal oscillation scale, so that it is
averaged away. The second consequence, however, implies that
the phase seen by the pump and the probe can be different be-
cause of the local birefringence, thereby introducing an addi-
tional term (nonlinear term) to (1). As discussed later, this effect
can be important in fibers with little polarization-mode coupling
(large values of coupling length) and sufficiently high PMD. In
such fibers, polarization-dependent phase shifts of the order of
the ones from the CD (which is small in DSF fibers) can be
picked up and strongly vary the oscillation frequency of the
Stokes signal intensity.

It is interesting to note that in the case of fibers with small
values of PMD, once a CD map for a particular fiber
is obtained, we can retrieve information of the local NLC
(i.e., ) if we consider a ratio for the pump and probe
powers different from two. Unfortunately, local variations due
to the coupling length will not allow us to obtain good and re-
producible maps of the NLC. An alternative way [3] consists of
performing two different measurements keeping the ratio

constant (and different from two), but attenuating of the
same factor both pump and probe powers. It follows that the
difference between the temporal frequencies of two measure-
ments is independent of the CD (the linear term in (2) is
equal for both cases, and so it is cancelled out) but contains a
dependence in

(3)
This allows us to obtain a map of the NLC versus fiber distance.
Note that typical variations of the refractive indexalong FUT
will not significantly contribute to the term.

III. EXPERIMENTAL SETUP

The experimental setup used for measuring the distributed
CD is similar to the one of Mollenaueret al.[1] and is shown and
described in detail in [3]. Measurements were made on different
DSF fibers. The data for the two DSF fibers reported here are as
follows. NIST fiber: length 9700 m, PMD 0.02 ps/ km.
AC-2 fiber: length 7400 m, PMD 0.19 ps/ km. The PMD
was measured by using a PMD analyzer (IQ-5500, EXFO).

IV. DISTRIBUTED CD MAP MEASUREMENTS

Fig. 1 shows the Stokes signal intensity for the NIST fiber,
for different input SOPs into the FUT, when pump and probe
SOPs are set identical. No significant dependence of the results
on the input polarizations was expected for this fiber because

Fig. 1. Measured typical traces of the Rayleigh back-scattered FWM signals
from a DSF fiber with low PMD (NIST fiber) for different input SOPs. Inset
figure shows the two CD maps when the lights enters from the different fiber
ends resulting in a less than�4% difference of CD magnitudes.

Fig. 2. Overall CD at different wavelengths (open circles) compared with
phase-shifted method (solid line), for the NIST fiber. In the inset: CD maps for
different wavelengths.

the pump and probe lights had no time to acquire significantly
different phases due to the frequent coupling among the fast and
slow axes and the low value of PMD. Indeed, our results show
that we obtained very small changes in both the amplitude and
the location of the Stokes signal maxima. The inset of Fig. 1
shows the CD maps obtained from lights launched into the FUT
from both ends (one of the profiles was inverted), resulting in
good reproducibility and accuracy. A spatial resolution of CD
typically of 250 m with a high accuracy was observed.

Fig. 2 gives the overall CD at different wavelengths, where
open circles are obtained from summing up the FWM disper-
sion map and the bold line represents results obtained with an
EXFO FTB-5800 analyzer using a phase-shift technique [4].
The two methods produce results in excellent agreement. The
inset figure in Fig. 2 shows the distributed CD maps at different
wavelengths. It clearly appears that CD maps have similar ten-
dencies except for the dispersion values’ offset at the different
wavelengths.
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Fig. 3. Measured back-scattered FWM signal intensity profiles for the PMD
DSF fiber (AC-2) with different input SOPs. The bold line shows a progressive
averaging of the signals during scrambling of pump and probe polarization
states. In the inset: the measured FWM signals from the other fiber end.

Fig. 3 shows the data relative to the PMD fiber (AC-2). As it
can be seen, the maxima (minima) locations of the Stokes signal
vary strongly with the presence of an additional phase due to the
PMD. The shift in the maxima (minima) depends on the input
SOPs. In fact, the CD map can no longer be estimated from a
single trace alone, as the frequency at a given location depends
on the (arbitrary) relative polarization states at that location for
that input SOP. To remove this arbitrary component, different
profiles, each corresponding to a different input SOP, have to
be taken. For a given location, the mean value of group-velocity
dispersion should then be retained. Note that averaging over all
the possible SOPs during an acquisition by means of a polar-
ization scrambler (see bold line in Fig. 3) does not give a useful
result as it simply corresponds to the sum of the different indi-
vidual traces giving a curve that is basically flat due to arbitrary
positions of the different maxima.

V. DISTRIBUTED MEASUREMENT

As discussed in Section II, when the ratio is kept
different from 2, the fiber nonlinearities produce an additional
phase mismatching. Therefore, it is important to maintain

at any position along the fiber in order to extract
an accurate local CD value. However, as discussed before, this
effect [i.e., the presence of both linear and nonlinear terms
in (1)] can be exploited to obtain a distributed map of the
NLC (i.e., ). The method consists of taking at least
two measurements while keeping , and inserting a
different attenuation for the two different measurements [see
(3)]. Fig. 4 shows two FWM signal traces when the launched
pump and probe powers had a difference of 10 dB. Two fringes
are missed when the attenuation is introduced. This agrees with
our theoretical simulation very well [see Fig. 4(a)]. Extracting
a distributed NLC map from these curves is possible, as shown
in Fig. 4(b) for a distributed NLC ( ) map versus fiber
length. However, our first results are not accurate enough
mainly because of the uncertainty in measuring high peak
powers of launched pulses and the noise on the measurements.
Note that the NLC map would also be sensitive to power
fluctuation along fiber.

Fig. 4. Measured FWM intensity oscillations versus fiber distance
for the low-PMD fiber (NIST fiber) at the wavelength 1541.3 nm for
1) P = P = 1150 mW and 2)P = P = 115 mW. In the inset:
(a) theoretical simulation and (b) an NLC map.

VI. DISCUSSION ANDCONCLUSION

We have demonstrated highly spatially resolved and accurate
distributed CD measurements in low-PMD DSF fibers based
on phase mismatched FWM. Because of the sensitivity of the
FWM efficiency and the PMD-induced phase mismatching, this
method could be severely limited in the determination of accu-
rate and meaningful CD maps for fibers having nonnegligible
values of PMD, as reported here for the case of a fiber with
PMD 0.2 ps/ km. Further investigations between the inter-
play of PMD, coupling length, and FWM are in progress. Fortu-
nately, for low-PMD fibers, the input SOP has little effect on the
CD map. Thus, it is possible to extract meaningful information
about distributed CD values from the detected Stokes signal os-
cillations. For recently installed fibers with low PMD, precision
measurements can be carried out by averaging over all SOPs
to avoid ambiguities. We have also demonstrated a useful mea-
surement range of 40 km when using reclity.

Moreover, we have presented a new method in order to mea-
sure a distributed map of the NLC . Preliminary results
confirmed the feasibility and the reproducibility of the method
and further work is in progress.
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Abstract : An elegant, passive stabilization method for ultrafast devices employing nonlinear
polarization rotation (NPR) is demonstrated both theoretically and experimentally. It allows
for a quantitative measurement of NPR in an optical fiber where it is otherwise completely
covered by linear fluctuations, and when applied to a wavelength converter excellent stability
over hours is obtained.
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Abstract : It is well known that single-mode communication fibers are birefringent and that
the orientation and the amount of birefringence are randomly distributed along the fibers. The
corresponding polarization mode dispersion (PMD) becomes therefore a statistical quantity,
and not only its mean value but also its probability distribution is important to assess the
inferred system impairments. This distribution depends on two parameters, the (mean) lo-
cal birefringence B and the coupling length h giving the distance after which a considerable
amount of power has coupled into the other polarization mode. In fibers having a length L
long compared to the beatlength and to h, the PMD probability distribution is Maxwellian
with a mean value of B(hL), whereas for coupling lengths approaching the fiber lengths, the
PMD statistics can change considerably. In this work we present a novel way to directly infer
the polarization coupling length h from measurements of the amount of nonlinear polarization
rotation (NPR) of the fiber. Different values of h were determined for different fibers. Espe-
cially noteworthy, a large difference in h was found for two standard fibers having almost the
same PMD.
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1. Introduction 

It is well known that single-mode communication fibers are birefringent and that the orientation and the amount 
of birefringence is randomly distributed along the fibers. The corresponding polarization mode dispersion 
(PMD) becomes therefore a statistical quantity, and not only its mean value but also its probability distribution 
is important to assess the inferred system impairments. This distribution depends on two parameters, on the 
(mean) local birefringence B and on the coupling length h giving the distance after which a considerable amount 
of power has coupled into the other polarization mode. In fibers having a length L long compared to h, the 

probability distribution is Maxwellian with a mean PMD value of B hL , whereas for coupling lengths 
approaching the fiber lengths, the PMD statistics can change considerably. In this paper we present a novel way 
to directly infer the polarization coupling length from measurements of the nonlinear polarization rotation 
(NPR) of the fiber.  

 

2. Theory 

In a dielectric medium, an intense elliptical input pulse induces birefringence – via the optical Kerr effect - due 
to the different amounts of intensity along the major and minor axis of the polarization ellipse. In an isotropic 
medium this self-induced birefringence leads to polarization ellipse self-rotation. In an optical fiber however, 
the situation is more complex due to the presence of the local intrinsic birefringence. The polarization changes 
are hard to predict in that case as the linear and nonlinear birefringences interact in a complicated manner. In 
general, the linear birefringence will however be much larger than the nonlinear one, and the evolution of the 
polarization vector ψ in a polarization maintaining fiber can then be approximated by [1]: 

ψσω≈ψ∂ θeffz Bi    (1) 

where σθ accounts for the linear birefringence with axis θ. The linear birefringence B is replaced by an effective 
birefringence Beff accounting for the nonlinear birefringence. The solution for Eq.1 is straightforward, and 
corresponds to a rotation of the input polarization vector around the linear birefringence axis σθ, with a rotation 
angle β given by 

zmBzBeff ))0(
2

( θ
α

ωωβ −==   (2) 

where α =n2P/(3cAeff), n2 is the nonlinear Kerr coefficient, P the power, and Aeff the effective area. mθ(0) is the 
projection of the input SOP on the birefringent axis. In principle the NPR can now be measured by varying the 
input power P and observing the corresponding change in the output SOP.  

However, an inherent problem for this kind of measurements is the stability of the output SOP at the exit of the 
fiber, subjected to fluctuations of the much larger linear birefringence B due to temperature changes and drafts 
in the fiber environment. We have recently proposed a method for measuring NPR [1] by removing the overall 
linear birefringence -and therefore also its fluctuations- in a purely passive way by employing a Faraday mirror 
(FM) and a double pass of the fiber under test. Doing so, the nonlinear birefringence (leading to NPR) was 
shown to remain unaffected, i.e. the NPR of the forward and backward path add up.  
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This allows to measure NPR both in polarization maintaining (PM) fibers and in standard fibers. However, the 
random variations of the intrinsic local birefringence axis in a standard fiber reduce the NPR. The situation 
becomes more complex, and we therefore resort to numerical simulations. The fiber is modeled as a 
concatenation of linearly birefringent trunks with a physical length h kept constant and a random birefringence 
axis orientation. For each of these trunks, Eq.2 is used to calculate the output SOP from the input one, with the 
input SOP calculated from the output SOP of the previous trunk. The SOP can therefore be calculated piece by 
piece, with the projection mθ being different for each new trunk. The final SOP will depend on the choice of the 
birefringence axis orientations, with variations being larger for large coupling lengths h. We therefore made 100 
runs for each specific coupling length to get a mean value of the NPR. 

 

3. Experiment 

The experimental setup for the measurement of NPR for different test fibers is shown in Fig.1. The light source 
consists of a distributed feedback laser (DFB) operated in pulsed mode at a wavelength of 1559 nm. Typically, 
pulses with a duration of 30 ns, a repetition rate of 1 kHz, and a peak power of up to 6 W (after amplification by 
an EDFA) are used. The light is then launched into the fiber under test (FUT) via a 90/10 coupler and a 
polarization controller (PC1). The coupler is inserted for the detection of the backward traveling light after the 
double pass of the FUT, with its 90% output port connected to the source in order to maintain high launch 
powers into the FUT. The polarization controller, PC1, allows to adjust the polarization of the light launched 
into the FUT, i.e. mθ(0), which is important for the strength of the NPR as demonstrated by Eq.2. Note that for 
low launch powers (negligible NPR), the action of PC1 is removed by the Faraday mirror, and its setting is 
therefore of no importance in that case. The output SOP is examined by an analyzer consisting of a polarization 
controller PC2 and a polarizing beam splitter (PBS). To achieve a good sensitivity of the analyzer, it is 
calibrated for equal power in the two PBS output arms for low power launch signals where no NPR occurs. The 
two PBS output channels were monitored by a fast photodiode (200 ps response time) and a sampling scope. 
The measurements were then performed in the following way: for a given launch power, the polarization 
launched into the FUT was adjusted (PC1) to give the smallest possible output power at the monitored PBS 
channel. Consequently, the difference between the two PBS output channels is maximized, corresponding to a 
maximum value of the NPR. 

 

4. Results 

We first measured the NPR in a PM fiber with a length of 200 m. The results are shown in Fig.2. As can be 
seen, NPR starts to be important for launch powers above 1 W. In spite of the linear increase that would be 
experienced in the absence of NPR (straight line), the output power actually starts to decrease for input powers 
above 2.5 W. The measured data (squares) agree well with our model (solid curve), in which mθ(0) was varied 
in order to give a minimum output power from the PBS channel like in the experiment, and only one fiber trunk 
was used (coupling length h = fiber length L).  

In Fig.3, numerical results for different coupling lengths (indicated on the right) for a fiber length of 1.5 km are 
given. NPR is reduced for a larger number of couplings resulting in a more and more linear dependence of the 
output from the input power. This reduction is because of the increased probability that the NPR action in one 
trunk is compensated for by another. As the figure demonstrates, the results for the different coupling lengths 
can be clearly distinguished. 

These theoretical predictions were then compared to measurements of different standard fibers. The fiber 
lengths were typically 1 to 1.5 km (of course the simulations were adjusted accordingly). Fig.4 shows the results 
for 2 standard fibers with large and small PMD, respectively. Note that for a clearer distinction of the curves, the 
figure gives the strength of NPR, i.e. the reduction of the output power from the value without NPR. As 
expected, the two standard fibers exhibit a NPR that is much lower than for a PM fiber. But the amount of NPR 
for the two standard fibers is distinctively different as well. From comparison of the experimental results with 
the simulations, the coupling lengths can be estimated to about 75 m for the small PMD and 625 m for the large 
PMD fiber, respectively. A value of h<100 m is quite reasonable for a state-of-the-art, low PMD fiber. The 
coupling length of h~600 m for the high PMD ‘standard’ fiber is large, but its high PMD value of 1.9 ps/√km 
could indeed indicate that there might be well defined birefringent axes in that fiber. Moreover, a different 
estimation for the coupling length of these fibers from PMD and beat length measurements using Optical 
Frequency Domain Reflectometry [2] is in good qualitative agreement with the results presented here.  
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5. Conclusions 

Measurements and a model of NPR in an optical fiber were presented, allowing for direct determination of the 
polarization mode coupling length. Coupling length values of several 100 m were obtained for large PMD 
fibers, whereas it was as low as 75 m in state-of-the-art low PMD fibers. 
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Fig. 1. Experimental setup. 

Fig. 2. Minimum output power of PBS channel 1 for a 200 m long PM fiber 
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Fig. 3. Numerical results for a fiber length of 1.5 km with different polarization mode coupling lengths h. 
Fig. 4. Experimental and numerical results of NPR strength in different fibers. 
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Abstract : An analytical solution for the influence and strength of nonlinear polarization ro-
tation (NPR) in an optical fiber is presented. It agrees well with our measurements of NPR in a
polarization maintaining fiber, made possible by removing the much larger, fluctuating linear
birefringence with a Faraday mirror. The same technique is then employed to measure NPR
in standard fibers, where its dependence on the polarization mode coupling length can be ex-
ploited to get a direct estimate for this important fiber parameter.
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C.4 Measurements of the nonlinear coefficient
n2/Ae f f using a self-aligned interferometer and a
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Abstract : A simple, all-fiber implementable method for the measurement of the nonlinear
coefficient n2/Ae f f in telecom fibers at 1550 nm is demonstrated. The method is based on the
interferometric detection of the Kerr phase shift acquired by a laser pulse along the fiber under
test. The detection is made by an all-fiber self-aligned interferometer incorporating a Faraday
mirror. The self alignment characteristic allows for an easy and quick initial adjustment of
the interferometer and leads to a good robustness as the two interferometer arms are always
automatically matched.The Faraday mirror, whose property is that it transforms any input po-
larization state to the orthogonal one upon reflection, completely removes any polarization
transformation of the fiber under test. In the same way, any fluctuations of the polarization
state due to environmental perturbations (temperature, pressure changes) are removed. The
polarization state re-entering the self-aligned interferometer on the backwards path is therefore
fixed, so that it can be adjusted once-for-all for maximum visibility at its output. The presence
of the Faraday mirror makes the setup robust, leading to a good accuracy in the n2/Ae f f value.
Moreover, the fiber under test can be easily replaced without necessitating any further readjust-
ment of the interferometer. The proposed scheme is therefore well suited to routinely measure
the nonlinear coefficient.
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Abstract : The polarization coupling length, an important parameter of the PMD probability
distribution, is obtained from measurements and modeling of the nonlinear polarization rota-
tion in optical fibers. Results for different types of fibers are presented.
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Abstract : In this work we present interlaboratory measurements of the nonlinear coefficient
n2/Aeff for standard SMF and DSF fibers. Two different measurement methods were used by
two different groups. One of the method is based on the detection of the Kerr phase shift by
a self-aligned interferometer. The other method is an SPM based cw dual-frequency method.
Interlaboratory comparison shows that the values found with the two methods are in good
agreement.
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C.7 Implementation of a Faraday Mirror Stabilization
Scheme for All Optical Switching in a Standard

Telecom Fiber.
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Abstract : We present an elegant passive stabilization method for ultrafast devices employing
nonlinear polarization rotation (NPR) in optical fibers. The fluctuations in the linear birefrin-
gence, including temperature and pressure induced ones, that affect the measurement of the
NPR are successfully removed in a passive way by using a double pass of the fiber under test
with a Faraday mirror at the end of the fiber. This method provides excellent switching stabil-
ity over long term period when applied to a wavelenght converter.
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C.8 Overview of coherent reflectometry techniques:
characterization of components and small systems.
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Abstract : Coherent reflectometry techniques have important advantages over direct detec-
tion techniques: larger sensitivity, larger dynamic range, better resolution, and spurious light
suppression. The measurement range is typically limited to less than 1 meter for optical low
coherence reflectometry and to less than 1 km for coherent optical frequency domain reflec-
tometry. Especially the second technique is therefore well suited for measurements of optical
modules with extended components and for small systems.

PRESENTED : NIST 2000 (Boulder, CO)















Appendix C Proceedings of Conferences 240



Appendix C Proceedings of Conferences 241

C.9 Distributed measurements of chromatic dispersion
and of the nonlinear coefficient in DSF fibers with

non negligible values of PMD.
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Abstract : We report on the influence of PMD and especially of the polarization coupling
length on the measurement of distributed chromatic dispersion in DSF. We further demon-
strate how to obtain distributed values for nonlinear coefficient n2/Ae f f .
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Abstract:  
We report on the influence of PMD and especially of the polarization coupling length on the 
distributed chromatic dispersion measurement in DSF. We further demonstrate how to obtain 
distributed values for the nonlinear coefficient n2/Aeff . 
 
2000 Optical Society of America 
OCIS codes: (060.2270) Fiber characterization,  (190.4380) Nonlinear optics, four-wave mixing 

1. Introduction 

The implementation of Erbium-doped fiber amplifiers allows for high-bit rate transmission over transoceanic 
distances. At the same time, the technique of wavelength division multiplexing (WDM) is used to increase the 
transmission rate, leading to an important amount of power inside the fiber. Because of the long distances and 
high powers, optical nonlinearities start to play a significant role. In dispersion shifted fibers (DSF), four wave 
mixing (FWM) leads to important transmission impairments. The FWM efficiency depends on both the 
chromatic dispersion profile and the nonlinear coefficient n2/Aeff. It is therefore highly interesting to have a non-
destructive technique that allows to map these parameters as a function of distance along the fiber. A convenient 
approach to measure the chromatic dispersion map in a DSF fiber was proposed by Mollenauer et al. [1].  
We compare measurements of DSF fibers with different values of the polarization coupling length h, and find 
that for the large h values typically found in the older installed DSF cables, the method is limited and data 
elaboration needs to be refined. Further, we demonstrate how the method can be exploited to obtain information 
on the distributed value of the nonlinear coefficient n2/Aeff. 

2. Theory 

The measurement method [1] is based on the detection of the fringe period of the Rayleigh backscattered FWM 
signal generated in the fiber under test (FUT) by injecting two powerful waves with frequencies ω1 and ω2 
(ω1<ω2). Concentrating on the FWM generated Stokes frequency ωS = 2ω1 - ω2 for simplicity, one can show 
that the phase mismatch ∆k between the pump (ω1) and the generated Stokes signal (ωS) becomes [2] 
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As the equation shows, the phase matching depends on the local chromatic dispersion D and on a nonlinear term 
depending on the local nonlinear coefficient γ. The phase-mismatch ∆k leads to a temporal intensity oscillation 
of c/2n ∆k/2π of the Rayleigh backscattered Stokes signal, which is detected in an OTDR-like fashion to map it 
on a distance scale. Typically, for the dispersion mapping, one should choose a seed power twice as large as the 
pump power (P2=2P1),  so that the dependence on the local nonlinear coefficient disappears.  
Eq.1 does not take into account any polarization dependent effects. However, it is clear that the relative 
polarization states of pump and seed will vary according to the PMD of the FUT. This change can be 
characterized by the spatial correlation of the pump and seed SOP at the output, and for relatively large PMD 
values one finds [3] 
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where <∆τ> is the overall PMD. This change in the relative polarization states will bring about two 
consequences. First, the FWM efficiency η is polarization dependent,  

( )21SS1
2

1 rr
+=η       (3) 

Consequently, on top of the signal intensity oscillations of the Stokes signal related to the phase mismatch (i.e. 
local chromatic dispersion), one gets an additional modulation due to the change in efficiency. However, this is 
usually not dramatic as the length scale of this polarization dependent fluctuation is normally quite short so that 
its effect is averaged away. As a second consequence of PMD however, the phase seen by pump and seed can be 
different because of the local birefringence, thereby introducing an additional term to Eq.1. As is discussed in 
the results section, this can be important in fibers with little polarization mode coupling. In such fibers, 
polarization dependent phase shifts of the order of the ones from the chromatic dispersion (which is small in 
DSF fibers) can be picked up, thereby strongly varying the oscillation frequency of the Stokes signal intensity.  
As suggested by Eq.1, it should be possible in a similar way to extract the distribution of the nonlinear 
coefficient γ once the dispersion map is measured. One simply has to choose a ratio of seed to pump power 
P2/P1≠2. However, the polarization variations can again deteriorate the measurement. A much better approach is 
therefore to perform - directly after the first one - a second measurement with the same ratio of P2/P1 but smaller 
absolute powers. The difference between the two corresponding temporal oscillations does no longer depend on 
the chromatic dispersion:  
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where α is the power attenuation factor between the two measurements.  

3. Experimental set-up 

The experimental setup for the measurements is shown in Fig.1. The light source consists of two tunable 
distributed feedback lasers (DFB) in cw mode. The SOP of the two waves is controlled via two polarization 
controllers (PC1, PC2), and made equal in order to maximize FWM (Eq. 1). The two waves are then amplified 
by a SOA modulated with a frequency of 4 kHz and a pulse width of 30 nsec, and further amplified by an 
EDFA. Typically, peak power values in the range 150-1500 mW are used. The SOP of both waves launched into 
the FUT is varied simultaneously by a third polarization controller (PC3). The Rayleigh backscattered signal 
from the FUT is collected from the circulator, and the Stokes component of interest is isolated by a tunable filter 
(40 dB attenuation @ ±1 nm). The oscillation of the Stokes power is monitored as a function of distance by 
controlling the SOA and the detector with an OTDR. From this trace, the dispersion and γ map are then 
elaborated according to eqs.1 and 4.  

4. Results 

First, we map the chromatic dispersion for two different DSF fibers, one with a small and one with a large 
polarization coupling length h (determined from (polarization sensitive) Optical Frequency Domain 
Reflectometer traces). In both fibers, the overall PMD is small (<0.2 ps/√km). Fig.2 shows the Stokes signal 
power for the low coupling length fiber for different input SOPs into the FUT (pump and seed input 
polarizations are kept identical). No significant dependence of the results on the input polarization is expected 
for such a fiber, as the pump and seed signals have no time to acquire significantly different phases due to the 
frequent coupling among the fast and slow axes. Indeed, the figure demonstrates that only small changes in the 
amplitudes, but not in the locations of the Stokes signal maxima are obtained. For completeness, inset (a) shows 
the chromatic dispersion map as obtained from entering the fiber from both ends (one of the profiles is inverted), 
demonstrating the good reproducibility and accuracy of the results. Inset (b) gives the overall dispersion at 
different wavelengths, where the open circles were obtained from summing up the FWM dispersion map, and 
the bold line from an alternative method. Good agreement between the two methods can be observed.  
Fig.3 shows the results for the long coupling length fiber. As can be seen, the maxima locations of the Stokes 
signal vary strongly due to the additional phase from PMD, which depends on the input polarization states. In 
fact, the chromatic dispersion map can no longer be estimated from a single trace alone, as the frequency at a 
given location depends on the (arbitrary) relative polarization states at that location for that input SOP. To 
remove this arbitrary component, different profiles, each corresponding to a different input SOP, have to be 
taken. For a given location, the mean value of GVD should then be retained. Note that averaging over all the 
possible SOP during an acquisition (by using a polarization scrambler, bold line in the inset of Fig.3) will not 
give a meaningful result, as it simply corresponds to a sum of the different individual traces giving -due to 
arbitrary positions of the different maxima - a curve that is basically flat.  



Finally, Fig.4 shows some first results for the distributed nonlinear coefficient γ of the low coupling fiber. Both 
experimental results and simulation (inset a) show that the oscillation frequency is lower for lower input powers, 
as expected. The corresponding γ coefficient obtained according to Eq.4 is shown in inset (b). 

5. Conclusions 

We have shown that mapping of chromatic dispersion in DSF fibers is strongly affected by their polarization 
coupling length. Nevertheless, the possibility to obtain a meaningful dispersion map in a fiber with low 
polarization coupling still exists. However, it requires averaging of the dispersion values at a given location for 
different input SOP. First results for the extraction of the distributed nonlinear coefficient n2/Aeff are promising.  

6. References 
[1]  L.F. Mollenauer, P.V. Mamyshev, and M.J. Neubelt “Method for facile and accurate measurements of optical fiber dispersion 
maps”, Opt. Lett. 21, 1724-6 (1996). 

[2] S. Song, C.T. Allen, K.R. Demarest, and R. Hui “Intensity dependent phase matching effects on four wave mixing in optical fibers”, 
J. Ligthwave Technol. 17, 2285-90 (1999). 
[3]  J. Hansryd, H. Sunnerud, P.A. Andrekson, and M. Karlsson “Impact of PMD on Four-Wave-Mixing-Induced crosstalk in WDM 
systems”, Photon. Technol. Lett. 12, 1261-3 (2000). 
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Fig. 1. Experimental setup. 

Fig. 2. Results for the short coupling length fiber. 
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Fig. 3. Signal intensity profiles for the long coupling length fiber.  

Fig. 4. Map of the nonlinear coefficient for the short coupling length fiber. 
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C.10 First and second order PMD emulator
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Abstract : We present a PMD emulator where the DGD and the ratio between first and second
order PMD can be set by the user. Contrary to approaches which try to mimic a standard fiber
as closely as possible, our emulator gives one (adjustable) value for the PMD. This allow to
directly determine the maximum (instantaneus) values for first and second order PMD for a
given permissible system impairment.
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C.11 A near infrared SNOM: First results and prospects.
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Abstract : Scanning near-field optical microscopy (SNOM) is today a well-known powerful
technique that breaks the diffraction limit (??/2) of the lateral resolution in ordinary optical
microscopy. These last ten years many applications have emerged in the fields of solid state
physics, biological materials, organic thin films and single molecule spectroscopy. However,
the optical frequencies are often restricted to the visible range, maybe owing to the lack of com-
mon sensitive detectors at other wavelengths. By using specific detectors such as cooled Ge or
InGaAs/InP avalanche photodiodes (APD), our aim is to extend this optical range to the near-
infrared where new characterizations are expected for biological specimen, optical waveguides
and/or quantum emitting structures.
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INTRODUCTION
Scanning near-field optical microscopy (SNOM) is today a well-known powerful technique that breaks the diffraction limit (≈λ/2) of the lateral resolution in ordinary optical microscopy. These last
ten years many applications have emerged in the fields of solid state physics, biological materials, organic thin films and single molecule spectroscopy. However, the optical frequencies are often 
restricted to the visible range, maybe owing to the lack of common sensitive detectors at other wavelengths. By using specific detectors such as cooled Ge or InGaAs/InP avalanche photodiodes 
(APD), our aim is to extend this optical range to the near-infrared where new characterizations are expected for biological specimen, optical waveguides and/or quantum emitting structures. 

PROSPECTS
In the visible, fluorescence SNOM imaging with single molecule sensitivity led to many recent studies of single molecule diffusion and spectroscopy. In biology, fluorescence technology is also 
widely used (nano-environment sensitive optical probe, on-line fiber-optic biosensors, DNA sequencing, …), but is hampered by Rayleigh scattering (1/λ4) and visible background fluorescence. 
As a consequence near-infrared dyes are currently produced to improve the signal-to-noise ratio so that near-infrared SNOM appears as a promising tool for these future investigations.
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C.12 Measurement of nonlinear polarization rotation in
high birefringence optical fibers with a Faraday

mirror.
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Abstract : We present both a theoretical and experimental analysis of nonlinear polarization
rotation in an optical fiber. Starting from the coupled non-linear Schrödinger equations an an-
alytical solution for the evolution of the state of polarization, valid for fibers with large linear
birefringence and quasi cw input light with arbitrary polarization, is given. It allows to model
straightforwardly go-and-return paths as in interferometers with standard or Faraday mirrors.
In the experiment all the fluctuations in the linear birefringence, including temperature and
pressure induced ones, are successfully removed in a passive way by using a double pass of
the fiber under test with a Faraday mirror at the end of the fiber. This allows us to use long
fibers and relatively low input powers. The match between the experimental data and our
model is excellent, except at higher intensities where deviations due to modulation instability
start to appear.
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C.13 Nonlinear polarization rotation in a highly
birefringent optical fiber using a Faraday mirror.
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Abstract : We present both a theoretical and experimental antlysis of nonlinear polarization
rotasion in an optical qiber. Starting from the caupled non-linear Schrödinger equations an an-
alytical solution for the evolution of the state of polarization, valid for fibers with large linear
birefringence and quasi cw input light with arbitrary polarization, is given. It allows to model
straightforwardly go-and-return paths as in interferometers with standard or Faraday mirrord.
In the experiment all the fluctuations in the linear birefringence, including temperature and
pressure induced ones, are successfully removed in a passive way by using a double pass of
the fiber under test with a Faraday mirror at the end of the fiber. This allows us to use long
fibers and relatively low input powers. The match between the experimental data and our
model is excellent, except at higher intensities where deviations due to modulation instability
start to appear.
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C.14 Measurement of nonlinear coefficient n2/Ae f f in
optical fibers using a self-aligned interferometer

and a Faraday mirror.
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Abstract : A method for the measurement of the nonlinear coefficient n2/Ae f f in telecom
fibers at 1550 nm is demonstrated. It is based on the Kerr phase shift detected by a self-aligned
interferometer incorporating a Faraday mirror. This makes the set-up very robust, and differ-
ent test fibers can be measured without any further readjustments.
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C.15 PMD effect on measurements of distributed
chromatic dispersion in DSF fibers

H. Chen2, M. Leblanc2, and G. Schinn2, C. Vinegoni2,1, M. Wegmuller1,
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Abstract : We report PMD effect on the distributed chromatic dispersion map measurement
based on phase mismatched four-wave mixing. Experimental results of the distributed chro-
matic dispersion map for a low PMD dispersion-shifted fiber are described with spatial reso-
lution of 250 m and dispersion accuracy less than 0.02 ps/nm.km. For high PMD dispersion-
shifted fibers chromatic dispersion map may be difficulty to be resolved if the fiber is with long
polarization coupling length, but will still be possible measurable for a low polarization cou-
pling length fiber. Finally to determine distributed nonlinear coefficient with this method is
also discussed.
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ABSTRACT

We report PMD effect on the distributed chromatic dispersion map measurement based on phase
mismatched four-wave mixing. Experimental results of the distributed chromatic dispersion map for a low
PMD dispersion-shifted fiber are described with spatial resolution of 250 m and dispersion accuracy less
than ±0.02 ps/nm.km. For high PMD dispersion-shifted fibers chromatic dispersion map may be difficulty
to be resolved if the fiber is with long polarization coupling length, but will still be possible measurable for
a low polarization coupling length fiber.  Finally to determine distributed nonlinear coefficient with this
method is also discussed.

Keywords: distributed chromatic dispersion, four-wave mixing, nonlinear coefficient, polarization mode
dispersion, optical-time-domain-reflectometer.

1. INTRODUCTION

Recently there has been a surge of interest in the measurements of distributed chromatic dispersion (CD)
along optical fiber for the dispersion management in the design of ultrahigh capacity optic fiber
transmission systems1-7. Nonlinear effects, such as four-wave mixing (FWM)8-16 and cross-phase
modulation (XPM)17, 18, may seriously affect an optical transmission system even with small chromatic
dispersion (CD), e.g. in dispersion-shifted fibers (DSF). There are several methods of either modulation
instability, or phase matching of four-wave mixing1-3, or bidirectional optical-time-domain-reflectometer
(OTDR) technique5, 6 for measuring the spatial resolved chromatic dispersion map as a function of fiber
length. A convenient way of measuring the chromatic dispersion map is an OTDR-like technique that was
proposed by Mollenauer et al in 1996 based on the phase mismatching of four-wave mixing1.

In practice four-wave mixing leads to important impairments for optical transmission systems.
However, FWM can also be used to measure fiber parameters such as chromatic dispersion and nonlinear
coefficient12 because the FWM efficiency depends on both the fiber chromatic dispersion and the nonlinear
coefficient n2/Aeff.

In this paper we describe PMD effect on the distributed chromatic dispersion measurements based
on the phase mismatched four-wave mixing. Experimental results of the distributed chromatic dispersion
measurement for a low PMD dispersion-shifted fiber are presented with spatial resolution of 250 m and
dispersion accuracy less than ±0.02 ps/(nm.km). For high PMD dispersion-shifted fibers chromatic
dispersion map may be difficulty to be resolved if fiber is with a long polarization coupling length, but will
still be possible measurable for a low polarization coupling length fiber. Finally a measurement of
distributed nonlinear coefficient n2/Aeff was also studied.

2. THEORY

The method of OTDR-like technique to measure a distributed chromatic dispersion map is to detect the
fringe period of the Rayleigh back-scattered FWM signal, either Stokes or anti-Stokes, generated from the



fiber under test (FUT) by injecting two powerful lights with frequencies ω1 and ω2 (ω1<ω2). Concentrating
on the FWM generated from Stokes frequency ωS = 2ω1 - ω2 for simplicity, one can show that the phase
mismatch ∆k between the pump (ω1) and the generated Stokes signal (ωS) becomes1
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As the equation shows, the phase mismatching depends on the local chromatic dispersion D (linear term)
and on a nonlinear coefficient γ (nonlinear term). The Stokes signal can also be expressed as a spatial
intensity oscillation with period λSp. Thus, the temporal oscillation frequency νt in intensity of the Rayleigh
back-scattered light can be expressed as
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If P2 = 2P1 the nonlinear term is vanishing and a measurement of the local frequency allows to have
information on the local value of the chromatic dispersion along the fiber distance. Once obtaining a map
for the chromatic dispersion D(z,λ) and considering a ratio for the pump and probe power different from
two, we can in principle also retrieve an information on the local value of nonlinear coefficient γ(z) (i.e.
n2/Aeff).

Fig.1 Four-wave mixing intensity oscillation versus fiber length for different ratio between probe and pump
powers. Input pump power P10 = 1 W and n2 = 2.5x10-20 m2/W.

The phase mismatch ∆k leads to a temporal intensity oscillation of the Rayleigh back-scattered
Stokes signal against the fiber length. Then it is able to give a map of the chromatic dispersion on a
distance scale. However, in Eq.1 (or Eq.2) we do not take into account any polarization dependent effects.
The relative polarization states of pump and probe vary according to polarization mode dispersion (PMD)
of the fiber under test. For relatively large PMD values one can find that the change in the relative
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polarization states would bring about two consequences. First, the FWM efficiency is polarization
dependent. The detected signal intensity oscillations is related to both FWM intensity due to the phase
mismatch of a local chromatic dispersion and an additional modulation due to the change in FWM
efficiency by PMD. However, this PMD effect on FWM is usually not significantly big to wash away the
FWM temporal intensity oscillation. As a second consequence of PMD, the FWM phase mismatch is
polarization dependent. The phase seen by pump and probe beams can be different because of the local
birefringence, therefore, to introduce an additional value to nonlinear term in Eq.2. As shown in Fig.1, any
change of ratio between probe and pump power, the oscillation frequency of the Stokes signal would be
changed. This can be important in fibers even with little polarization mode coupling. Thus, in such fiber
polarization dependent phase shifts could strongly vary the oscillation frequency of the Stokes signal
intensity to lead an uncertainty measurement of the distributed chromatic dispersion.

3. SETUP

The experimental setup for the distributed chromatic dispersion measurements is shown in Fig.2. The light
sources consisted of two distributed feedback lasers (DFB) in cw mode with a maximum power of 20 mW
(IQ-2400, EXFO Inc.). The laser frequency can be modulated by applying a small dither on current to
avoid stimulated Brillouin scattering (SBS) effect in fiber under test. Two laser beams were combined by a
50:50 coupler, and then modulated by a semiconductor optical amplifier (SOA) with a frequency of 4 kHz
and a pulse width of 30 ns. The extinct ratio of the pulse from SOA was of 50 dB. This pulse was amplified
again by an EDFA (IQ-6100, EXFO Inc.) to several watts19, 20. Typically the pulse peak power in the range
of 150 to 1500 mW was used for our measurements. The sate-of-polarization (SOP) of the two lights was
controlled by two polarization controllers, and made the same in order to optimize FWM intensity. The
SOPs of both lights launched into the FUT were varied simultaneously by a third polarization controller.
The total Rayleigh back-scattered signals from the FUT was collected through an optical circulator (C), and
only the Stokes component of interest was isolated by a tunable band-pass filter with an 40 dB attenuation
beyond ±1 nm. The oscillation of the Stokes power was monitored as a function of fiber distance by
controlling a semiconductor optical amplifier and the detector (APD) with a modified OTDR. Then from
detected FWM signal the chromatic dispersion map can be extracted.

Fig.2 Experimental setup for the measurement of distributed chromatic dispersion. PC: polarization
controller; TBF: tunable band-pass filter; and PBS: polarization beam splitter.

In the experiment we first demonstrated the measurement of a distributed chromatic dispersion map
in a dispersion-shifted fiber with a low PMD of 0.02 ps/√km. Then we studied this measurement by using a
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high PMD dispersion-shifted fiber (DSF) with PMD 0.19 ps/√km. The PMD was measured by a PMD
analyzer (IQ-5500, EXFO Inc.).

4. RESULTS

A. Chromatic dispersion map for a low PMD dispersion-shifted fiber

Fig.3 shows the Stokes signal intensity for a low PMD fiber for different input SOPs into the FUT where
pump and probe input polarization were kept identical. No significant dependence of the results on the
input polarization was expected for this fiber, as the pump and probe signals had no time to acquire
significantly different phases due to the frequent coupling among the fast and slow axes. Indeed, the figure
demonstrated that not only the small changes in the amplitudes, but also not in the locations of the Stokes
signal maxima were obtained. For completeness, inset (b) shows the chromatic dispersion map was
obtained from lights launched into the fiber from both ends (one of the profiles was inverted) and
demonstrated good reproducibility and accuracy of the results. The spatial resolution of chromatic
dispersion was typically of 250 m and an accuracy of ±0.02 ps/(nm km) or better was observed. Inset (a)
gives the overall dispersion at different wavelengths, where the open circles were obtained from summing
up the FWM dispersion map and the bold line was from the method of phase-shift technique21-23. The
results from these two methods were agreed very well.

Fig.3 Typical traces of the Rayleigh back-scattered lights from a dispersion-shifted fiber with short
coupling length. Insert (a) overall dispersion at different wavelength (circular) compared with phase-shifted

method (solid line). Insert (b) a chromatic dispersion map.

Fig.4 shows a less ±4% difference of chromatic dispersion magnitudes when the fiber was tested
from different ends. We also observed that the chromatic dispersion map was varied very small as changing
of wavelength separation between pump and probe beams.
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Fig.4 An example of chromatic dispersion map at wavelength 1541.3 nm from a dispersion-shifted fiber.
Circles and squares are referred as the chromatic dispersion map obtained from the lights launched into the
fiber from different ends. Insert figure shows a difference of chromatic dispersion values obtained from the

lights entering into different fiber ends.

In Fig.5 we demonstrated distributed chromatic dispersion maps at different wavelengths. It shows
clearly that dispersion maps are with a similar tendency except dispersion values with offsets for different
wavelengths. Again we demonstrated a good reproducibility and accuracy of the tested results.

Fig.5 Chromatic dispersion maps for different wavelengths.

B. Effect of PMD

We also measured chromatic dispersion for a high PMD dispersion-shifted fiber with PMD 0.19 ps/√km
and found that it was difficulty to extract the dispersion map. Fig.6 shows four-wave mixing intensity along
distance for different SOPs. As can be seen, maximum locations of the Stokes signal were varied strongly
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due to the additional phase from PMD, which depended on the input light polarization states. In fact, the
chromatic dispersion map can no longer be estimated from a single trace alone, as the frequency at a given
location depended on the (arbitrary) relative polarization states at that location for that input SOP. To
remove this arbitrary component, different profiles, each corresponding to a different input SOP, had to be
taken. For a given location, the mean value of group velocity delay (GVD) should then be retained. We
point out that an averaging overall possible SOPs during an acquisition (by using a polarization scrambler)
did not give a meaningful result, as it simply corresponds to a sum of the different individual traces giving -
due to arbitrary positions of the different maxima - a curve that was basically flat. It was nearly impossible
to extract a meaningful dispersion map from this measurement.

Fig.6 FWM intensity profile for a high PMD DSF fiber. Three traces correspond three input SOPs. The
insert figure shows the input lights were launched from another fiber end.

Fig.7 FWM intensity profiles for the different launched probe and pump powers.
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C. Effect of fiber nonlinearity and n2/Aeff measurement

As shown in simulation of Fig.1, the fiber nonlinear effect could introduce some additional phase mismatch
if the P2/P1≠2. Thus it is important to set P2/P1=2 at any position of fiber in order to extract a precision
local CD. Fig.7 shows experimental results of oscillation frequencies in the Stokes signal intensity was
varied with ratio of pump and probe powers. This effect not only comes from fiber itself (n2/Aeff), but also
could come from pump and probe power level and its ratio. This nonlinear phase mismatch makes
complicated to extract a precision chromatic dispersion map.

Fig.8 Left: measured FWM intensity for P10 = P20 = 1150 mW (trace a) and P10 = P20 = 115 mW (trace b) at
wavelength 1541.3 nm and the insert figure is theoretical simulation using experimental parameters. Right:

map of the Aeff for the short coupling length fiber for n2 = 2.6x10-20 m2/W.

However, the method of measurements of distributed chromatic dispersion can also be used to
measure distributed nonlinear coefficient γ (i.e. n2/Aeff) by fitting experimental data to the theoretical
simulation. One simple method to measure distributed nonlinear coefficient is to take several measurements
by using different input pump powers launched into FUT with a viable optical attenuator (VOA). Fig.8
(left) shows two four-wave mixing signal traces where launched pumped light power was attenuated by 10
dB. Clearly there are two fringes being missed from weaker pump power. The inserted figure shows our
theoretical simulation using experimental parameters and it agrees with our experimental results very well.
To extract a nonlinear coefficient map from above curves was possible24 as shown in Fig.8 (right) for an
Aeff map where we set n2=2.5x10-20 m2/W but not enough accuracy from these primarily results because of
noise on tested curves.

5. DISCUSSION

In the previous sections, we described the spatial resolved chromatic dispersion map measurement in the
low PMD or low polarization coupling length dispersion-shifted fibers. In order to increase the dynamic
range, we amplified the pulse peak power to about 10 W and predicted that the measurable fiber distance
could be of 40 km. In order to avoid the fiber nonlinear effect, one should choose the probe power twice as
large as the pump power (P2/P1=2) so the nonlinear phase mismatch is disappeared.

Even we demonstrated a promising measurement of chromatic dispersion maps with a precision and
good spatial resolution. However, due to sensitivity of FWM efficiency and phase mismatch on light
polarization by PMD, the meaningful distributed chromatic dispersion map may be impossible to obtain for
some fibers where the polarization coupling length is too large. In fibers with low PMD, polarization does
not affect the value of chromatic dispersion and a meaningful information about distributed chromatic
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dispersion can be possible to be extracted from the resulting Stokes oscillation. For recently installed fibers
with a low PMD, it would be possible to achieve a precision measurement by averaging over polarization
to avoid ambiguous. We point out here that polarization dependent phase mismatch is strongly depend on
probe and pump power level. Thus a relative weak power should be helpful to decrease the polarization
effect, but it would limit measurable dynamic range.

The method of the distributed chromatic dispersion measurement using phase mismatched FWM
may also be used to measure the distributed nonlinear coefficient of low PMD or low polarization coupling
length fibers. Therefore, a meaningful nonlinear coefficient map may be obtained by fitting experimental
data to simulation as indicated in second term of Eq.2. In our experiment we could clearly observe the
Stokes oscillation moving when the pump and probe power were varied. A clear distributed nonlinear
coefficient should be measurable if signal to noise ratio can be improved.

6. CONCLUSION

We demonstrated the distributed chromatic dispersion measurements in low PMD or low polarization
coupling length dispersion-shifted fibers with a high spatial resolution and good accuracy based on the
phase mismatched four-wave mixing. The impact of PMD and nonlinear effect on the measurements was
also studied. In the experiment we observed that the mapping of chromatic dispersion in DSF fibers was
strongly affected by their polarization coupling length. Nevertheless, the possibility to obtain a meaningful
dispersion map in a fiber with low PMD still exists. However, it requires averaging of the dispersion values
at a given location for different input SOPs to avoid ambiguous. The effect of nonlinear phase mismatch on
Stokes signal for the measurement of chromatic dispersion map may lead to extract a distributed nonlinear
coefficient n2/Aeff as a function of fiber distance.
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Abstract   A comparison of six techniques for nonlinear coefficient (n2/Aeff) measurements of various optical fibers 
using Pulsed-LD SPM, CW-LD SPM, sinusoidally modulated signal-SPM, XPM, self-aligned Interferometric, and 
FWM methods is first demonstrated.  The (n2/Aeff) obtained from the six different methods were in good 
interlaboratory agreement except for dispersion compensating fiber (DCF). 
 
Introduction:  Accurate determination of the nonlinear coefficient (n2/Aeff){ n2 is the nonlinear refractive index, 
Aeff  is the effective area}  of optical fibers is required for the ultra-long amplified optical transmission systems.  To 
date, the nonlinear coefficient of the optical fibers has been measured by using the self-phase modulation (SPM) 
method with a pulsed laser diode (LD) (P-SPM)[1], the SPM method with dual CW-LDs (CW-SPM) [2], the cross-
phase modulation (XPM) method [3], self-aligned Interferometric (INT) method [4], sinusoidally modulated signal-
SPM (S-SPM) method [5], and four wave mixing (FWM) method [6].   

Heretofore, ITU-T (n2/Aeff) round robin measurements for various optical fibers were coordinated by Prof. Y. 
Namihi ra of University of the Ryukyus (formerly KDD) have been successfully performed [7-9]. 
   This paper first presents the results of the interlaboratory fiber nonlinear coefficient (n2/Aeff) measurements for 
various optical fibers such as standard single mode fiber (SMF), cut-off shifted fiber (CSF), dispersion shifted fiber 
(DSF), non-zero DSF (NZDSF) and large effective area DSF (LEDSF), and dispersion compensating fiber (DCF) 
using six different techniques such as  the P-SPM [1] , CW-SPM [2], XPM [3], INT[4], S-SPM [5], and FWM [6] 
methods at 1550nm. 
Experiments:  The experimental set-up of the (n2/Aeff) measurements for the various single mode optical fibers are 
shown in Fig.1.  In Fig.1, (a), (b), (c), (d) and (e) are P-SPM method, CW-SPM method, XPM method, INT method, 
S-SPM, and FWM methods, respectively. Here, n2 can be estimated by (n2/Aeff) multiplying the Aeff.  The Aeff was 
measured by the far-field scan (FFS) technique [10]. The parameters of six kinds of  single mode optical fibers are 
shown in Table 1. These fibers were circulated to the five Laboratories such as University of the Ryukyus (formerly 
KDD), Furukawa, University of Geneva, Pirelli  Labs., Muroran Institute of Technology.   

P-SPM method:  In Fig.1(a), as a pulsed-LD, transform limited (TL) Gaussian pulse-LD were used [1]. The output 
optical pulse due to SPM was measured by the optical spectrum analyzer (OSA). As the input optical power increases, 
the maximum phase shift increases in proportion to the input peak power. The (n2/Aeff) can be obtained from the 
numbers of peaks in the SPM broadened spectra [1]. 

CW-SPM method: In Fig.1(b), the optical beat signal was derived from dual CW-LDs operating at around 1550nm 
[2]. The beat signal was then amplified in a preamplifier (EDFA1) and transmitted through a optical band pass fi lter 
to suppress the amplified stimulated emission and a polarizer to a following high power erbium amplifier (EDFA2).  

XPM method:  In Fig.1(c), the probe signal power is set relatively weak so that (n2/Aeff) in FUT is dominantly 
caused by amplified strong pump CW-LD through XPM and that the effect of SPM is negligible. When pump CW-LD 
or CW-SLD is modulated in its intensity, probe CW-LD is modulated in this phase through XPM [3].  

INT method: In Fig.1(d), the Interferometric method  is based on the detection of the Kerr phase shift by a self-
aligned interferometer.  Here, the distributed feedback laser (DFB), Erbium doped fiber amplifier (EDFA), 
polarization controller (PC),  Farady mirror (FM), and fiber Bragg grating (FBG) were used [4]. 

S-SPM method:  In Fig.1 (e), the S-SPM method is based on SPM effect estimation. This technique consists simply 
in propagating an optical signal sinusoidally modulated by means of an electro-optical LiNbO3 modulator. The γ -



 

  

factor estimation is achieved using a simulation tool capable of reproducing the evolution of signal spectra along the 
fiber and doing a comparison between acquired experimental data and simulation result [5]. 
FWM method: In Fig.1(f), pump (DFB-LD1) and probe (DFB-LD2) sources are tunable with a temperature and 
current controller. The LD1 of pump source was amplified with a EDFA to compensate an insertion loss of 
polarization optics, and passed through a tunable band-pass filter (BPF) with 

���
=1nm to eliminate the ASE noise of 

EDFA. The 
�

/2 wave plate was used to rotate the input azimuth of linearly polarized light of LD1. In contrast, the 
output light of LD2 was depolarized with a depolarizer to examine the depolarization effect on FWM efficiency. 
Otherwise, the depolarizer was deleted in the setup so that the FWM efficiency was measured in l inearly polarized 
states of LD1 and LD2 [6].  
Results and discussions: The results of interlaboratory (n2/Aeff) and n2 measurements at random polarization states 
(RP) using six different techniques of  P-SPM, CW-SPM, XPM, INT, S-SPM, and FWM for a SMF, a CSF, two kinds 
of  DSFs, two kinds of  NZDSFs, a LEDSF and a DCF at 1550nm are summarized in Tables 2 and 3, respectively.  
In Tables 2 and  3, n2(RP) = η n2(LP), η =1.0  for P-SPM, η =8/9 for CW-SPM, S-SPM, and FWM, and the 
polarization factor η =2/3  for XPM were used.   Here, LP represents the linear polarization state. 

Here, concerning the results of the self-aligned Interferometric (INT) method [4], the (n2/Aeff) values were larger 
than that of the other methods. Then, a correction (scaling) factor of ~0.8 with respect to the mean values of the other 
methods were used.  Such a scaling could easily arise from an erroneous estimation of the absolute peak power used 
for this measurements (underestimate of the power by a factor of just 0.8).   Therefore, the special correction factor of 
k =0.8 { (* ) in Tables 2 , 3, Figs.1,2}  were used for the INT method because of the experimental error.  

Meanwhile, in FWM method at Muroran Institute of Technology, only one (n2/Aeff) measurement of 20 km long 
DSF was measured at present, however, they wil l be measured (n2/Aeff) of another fiber samples in the near future. 
Fig. 2 show estimated values of n2 at random polarization states for various optical fibers as a function of six different 
measurement methods. Fig. 3 indicates the estimated values of n2 at random polarization states for six different 
measurement methods as a function of  various optical fibers.   

From Tables 2 and 3, it was found that the average values of n2 at RP of SMF, CSF, DSF, NZDSF, LEDSF, and  

DCF were ~2.62, 2.43, 4.80, 4.16. 3.19 and 12.1 x 10
-10

 [1/W], respectively.  Also, the average values of  n2 at RP for 

SMF, CSF, DSF, NZDSF, LEDSF and DCF were ~2.21, 2.14, 2.25, 2.31, 2.32, and 2.78 x 10
-20

 [m
2
/W], respectively.   

The average n2 values of ~2.25 x 10
-20

 [m
2
/W] of DSFs at random polarization states are in good agreement with 

that of  2.1 - 2.3 x 10
-20

 [m
2
/W] range of published results, respectively. 

Conclusions: From the interlaboratory nonlinear coefficient (n2/Aeff) measurements for various optical fibers, the 
(n2/Aeff) obtained from the six different techniques such as pulsed-LD SPM method, CW-SPM method, a XPM 
method, a self-aligned Interferometric (INT) method, a sinusoidally modulated signal SPM method, and FWM method 
were found to be a good agreement with each methods except for DCF. 
    It was confirmed that the average values n2 at random polarization state obtained from these different methods were 

 2.�~2.3 x 10
-20 [m

2
/W] for  SMF, CSF, DSF, NZDSF and LEDSF except for DCF of  ~2.8 x 10

-20 [m
2
/W], 

respectively. 
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Fibers SMF CSF DSF NZDSF LEDSF DCF 

D@1550nm 

[ps/ (nm- km)]  
16.3 19.4 - 0.58 - 2.19 - 2.48 - 109.1 

Aeff@1550nm 

[ƒ Êm‚ Q]  
84.6 88.2 46.8 55.6 72.8 22.9 

 

Fig.1 Experimental set up for six different (n2/Aeff) measurement methods. 

(a) Pulsed LD SPM(P-SPM),  (b) CW-LD SPM (CW-SPM),  (c) XPM 

(d) Self-aligned Interferometric (INT), (e) Sinusoidally modulated signal SPM (S-SPM), 

 (f)  Four wave mixing (FWM)  

(c) XPM method 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

 
 
 
 
   

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(d) Self-aligned Interferometric 

(e) Sinusoidally modulated signal SPM (S-SPM) (f)  Four wave mixing (FWM)  

 

Table 1 Fiber parameters for various single mode optical fibers. 

Table 2  Measured values of  (n2/Aeff) at random polarization states for 

                             various optical fibers  using  six different methods. 
 

(a) Pulsed-LD SPM (P-SPM) (b) CW-LD SPM (CW-SPM) 



 

  

P- SPM CW- SPM XPM INT (*) S- SPM FWM Ave ƒ Ð

SMF 2.22 2.20 2.07 2.14 2.45 - 2.21 0.145

CSF 2.16 2.04 1.89 2.27 2.34 - 2.14 0.182

DSF 2.23 2.39 2.19 2.11 2.36 2.22 2.25 0.105

NZDSF 2.20 2.37 2.05 2.33 2.63 - 2.31 0.216

LEDSF 2.19 2.37 2.18 2.31 2.56 - 2.32 0.155

DCF 2.72 2.66 2.97 3.21 2.33 - 2.78 0.331

                            (* ) : Using a correction factor of 0.8.  (- ) : Not Measured  

Fibers

n2� ~10- 20  [m2/ W]

� =1550nm @Random Polarization
(*): Using a correction factor of 0.8
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SMF CSF DSF

NZDSF LEDSF DCF

P- SPM CW- SPM XPM INT (* ) S- SPM FWM Ave ƒ Ð

SMF 2.62 2.60 2.45 2.53 2.90 - 2.62 0.172

CSF 2.45 2.31 2.14 2.58 2.65 - 2.43 0.206

DSF 4.76 5.09 4.69 4.51 5.05 4.70 4.80 0.227

NZDSF 3.94 4.26 3.70 4.18 4.75 - 4.16 0.395

LEDSF 3.01 3.25 3.00 3.18 3.51 - 3.19 0.209

DCF 11.86 11.56 13.00 14.02 10.12 - 12.11 1.481

                            (*) : Using a correction factor of 0.8.  (- ) : Not Measured  

Fibers

(n2/ Aeff)� ~10- 10  [1/ W]

 
 
 
 
 

 

 
 
 
 
 
 
  
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3  Estimated values of  n2 at random polarization states for 

                             various optical fibers  using  six different methods. 

Fig.2  Estimated values of  n2 at random polarization states for various  

optical fibers  as a function of  six different measurement methods. 

Fig.3  Estimated values of  n2 at random polarization states for six different 
measurement methods as a function of  various single mode optical fibers. 
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