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Abstract of the dissertation

In recent years the implementation of Erbium-doped fiber amplifiers allowed to ex-
tend high-bit rate transmission to transoceanic distances. But the demand for an in-
crease in transmission capacity is unprecedented and grows continuously. Despite the
intrinsically small values of the nonlinear coefficient for silica, the nonlinear effects in
optical fibers can be observed even at low powers considering that the light is con-
fined in a relative small area over long (i.e. transoceanic) interaction lengths due to
the extremely low attenuation coefficient and the event of optical amplifiers. This is
the reason why nonlinear effects can not be ignored when considering light propaga-
tion in optical fibers. In the thesis we have studied different ways both to measure
the nonlinear coefficient in optical fibers and how to exploit nonlinearities in a useful
way in order to build switches or to perform measurements of different optical fibers

parameters (e.g. chromatic dispersion, PMD).
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Chapter 1
Introduction.

1.1 Introduction (english)

In recent years the implementation of Erbium-doped fiber amplifiers allowed to extend
high-bit rate transmission to transoceanic distances. Despite this achievement, the de-
mand for an increase in transmission capacity is unprecedented and grows continu-
ously. This demand can be accounted for in different ways, like for example increasing
the bit-rate per channel (time domain multiplexing, TDM), or by simply increasing the
number of channels transmitted along a single fiber (wavelength division multiplex-
ing, WDM). These two methods have different advantages and disadvantages, but
nonlinearities start to play an important role for both of them due to the amount of
power present in the fibers.

To have an idea of the powers involved in data transmission it could be really in-
teresting to find out as an estimate, what is the minimum amount of power we have
to send into a fiber at an entry point A in order to transmit the data at an exit point B
distant some kilometers (typically tens of km).

The first step in optical communications corresponds to the conversion from an
electrical input signal into an optical bit stream and usually this is done by direct mod-
ulation of a semiconductor laser. A non-return-to-zero (NRZ) modulation format is
normally used meaning that the pulse remains on throughout the bit slot and its am-
plitude does not drop to zero between two or more successive bits. Of course the
performance of data transmissions has to be characterized through a parameter. This
parameter is called bit error rate (BER) and corresponds to the average probability of
incorrect bit identification; for example a BER of 10~ corresponds to an average 1 error
per billion bits.

So once the light is launched through the fiber, it will be detected at B by an optical

1



Chapter 1 Introduction. 2

receiver that converts the optical signal into an electrical one. The problem is to find
what is the required minimum average received optical power (or receiver sensitivity)
such that the signal will result to be error free. To note that the concept of error-free is
relative to the kind of transmission we are considering. In the case of voice communi-
cations, error-free transmission is defined to corresponds to a BER equal or better than
10~°. For more demanding data communications applications a BER of 10~12 could be
required. For an ideal detector (no thermal noise, no dark current and 100 % quantum
efficiency) 1 bits can be identified without error as long as even one photon is detected.
An error is made every time a 1 bit fails to produce even a single electron hole (e-h)
pair. For small number of photons (poissonian statistics) we can find that in order to
have a BER of 109 the average number of photons per 1 bits has to be greater than 20.
In terms of power that means (at 40 Gbit/s and at a wavelength of 1.55 pm) a minimum
power at the detector equal to 100 nW ie. -40 dBm (note that we are working using a
NRZ modulation format). Obviously most receivers operate well above the quantum
limit (typically 20 dB above). That means the minimum amount of power required in
order to detect a 1 is equal to -20 dBm. In a recent experiment performed at Alcatel
a 10 Tb/s record transmission capacity over backbone networks was achieved. This
was done using 256 channels in the 1.5 pm region (C and L band) spaced by 50 GHz.
If we propagate the signal along tens of km of optical fibers considering the natural
fiber losses (0.2 dB/km) a BER of 10~ requires an input power at the entry of the fiber
line of 0 dBm. For 256 channels this will correspond to a total amount of power at the
entry of the fiber of 24 dBm. This if of course an optimistic estimate because in fact we
have to take into account even for the losses due to the components along the fiber line
(like connectors for example and the WDM and the PBS components that filters the
different channels in frequency and polarization respectively out from the fiber). So in
practice the power is of the order of Watts!! A further increase in power is required for
the case of more demanding data communications (BER of 10~12).

So how do these optical nonlinearities arise [1]]? From a simple point of view we can
consider a material as made of a collection of charged particles: electrons and ion cores.
When an electric field is applied it will move these charges. The positive charges tend
to move in the direction of the field while the negative ones move into the opposite
way. For dielectric materials (glass in our case) the charges are not free to move and
only a slight misplacement will occur. This small movements (ion cores in one direction
and electrons in the other) will result in an induced electric dipole moment. Due to the
large mass of an ion core and the large frequency of the light (1013 - 1017 Hz) , it is
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only the motion of the electrons that is significant. Usually (Lorenz approximation) we
consider the potential in which the electron is immersed as harmonic. But for a high
electric field (i.e. high powers) higher order terms have to be included. This implies
that the induced polarization will not be linear in the electric field anymore (harmonic
approximation) but more generally (for silica) it is given by:

P—¢g (x(”E+x(3)EEE+ . ) (1.1)

where g is the permittivity of vacuum and X)) the j-th order susceptibility. The
term XV is the dominant contribution to the polarization P and its effects are included
through the refractive index n [2]. The cubic term X(® is responsible for phenomena
like third-harmonic generation, four wave mixing and nonlinear refraction [2]. The
tirst two processes (processes that generate new frequencies) are usually not important
unless phase matching conditions are satisfied. Nonlinear refraction instead is always
present and deeply affects the propagation of intense light in an optical fiber. The elec-
tromagnetic wave passing along the optical fiber induces a cubic polarization which is
proportional to the third power of the electric field (see Eq.[I.T). This is equivalent to a
change in the effective value of XD to XM + xBE2. In other words the refractive index
is changed by an amount proportional to the optical intensity [1].

n(w, 1) =n(w)+nyl (1.2)

This intensity dependence of the refractive index (optical Kerr effect) is responsible for
numerous nonlinear effects.

To note that even if the value of the nonlinear coefficient n; is quite small, nonlinear
effects in optical fibers assume a relevant importance due to the fact that the magni-
tudes of these effects depend on the length of the fiber along which the wave travels
and on the ratio ny/Aeft , where ny is the nonlinear refractive index of the fiber and
Aett the effective area of the lightmode. Despite the intrinsically small values of the
nonlinear coefficient for silica, the nonlinear effects in optical fibers can be observed
even at low powers considering that the light is confined in a relative small area (ca. 80
um?) over long interaction lengths (transoceanic as mentioned at the beginning of the
introduction) due to the extremely low attenuation coefficient and the event of optical
amplifiers. This is the reason why nonlinear effects can not be ignored when consid-

ering light propagation in optical fibers. For what concerns the value of the nonlinear
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coefficient, due to its importance in the effectiveness of the nonlinear effects, Chapter
of the thesis presents an original measurements for this parameter.

Another manifestation of the intensity dependence of the refractive index occurs
through self-phase modulation (SPM) a phenomenon that leads to spectral broaden-
ing of optical pulses travelling along a fiber [2]. Note that SPM - as for most nonlinear
effects - is not necessarily detrimental but can also be exploited as for example by in-
teracting with the group velocity dispersion (GVD) to form optical solitons (i.e. pulses
that propagates with undistorted shape).

When two or more optical waves co-propagate they can interact with each other
through the fiber nonlinearity. This interaction gives rise to different phenomena like
stimulated Raman and Brillouin scattering, harmonic generation, and four wave mix-
ing.

Cross-phase modulation (XPM) is the analogue of SPM but this time the induced
phase depends not only on its own intensity, but also on the one of the other co-
propagating lightwaves [2]. The strength of XPM is different for the coupling between
two waves with different frequencies but the same polarization and the coupling be-
tween two waves with the same frequencies but different polarization states. Both
these effects are examined in Chapter 3|and exploited for the study of nonlinear polar-
ization rotation (Section and for the implementation of an all-optical switch (Sec-
tion [3.2) respectively.

Another nonlinear effect that can be relevant in optical fibers is four wave mixing
(FWM). This phenomenon is not always present but appears only under appropriate
conditions (phase matching). This effect is devastating for WDM systems with equally
spaced channels as the generated frequencies coincides with a transmission channel,
leading to bit dependent interferences which degrade the transmitted signal. Chapter[4]
is dedicated to the different aspects of FWM in optical fibers and how we can exploit
it in order to produce photon pairs in single mode fibers (SMF) (Section [4.1), to obtain
distributed measurements of chromatic dispersion in SMF (Section and to obtain
longitudinal maps of the nonlinear coefficient in SMF (Section 4.3).

Chapter | finally concludes with a description of some other work the author was
involved with and not directly related to nonlinear effects in optical fibers. In Section
b.T]lwe report on a new setup dramatically increasing the sensitivity of near field optical
scanning microscopy. In Section[5.2|we report about the possibility to monitor the gain
inside an Erbium doped fiber amplifier (EDFA) by using an optical frequency domain
reflectometer (OFDR). In Section [5.3| we report on the polarization state evolution in



Chapter 1 Introduction. 5

the different fibers of a ribbon fiber. Finally in Section 5.4 a new type of polarization

mode dispersion emulator is presented.

In the following more detailed summaries of the different chapters are given.

1. In Chapter2]we demonstrate a new method for the measurement of the nonlinear
coefficient no/Aets in telecom fibers at 1550 nm.

As mentioned at the beginning of the introduction the implementation of
Erbium-doped fiber amplifiers allows for high-bit rate transmission over trans-
oceanic distances. At the same time, the technique of wavelength division mul-
tiplexing (WDM) is used to increase the transmission rate, leading to an impor-
tant amount of power inside the fiber. Because of the long distances and high
powers, optical nonlinearities due to changes in the refractive index (optical Kerr
effect) start to play a significant role. Among them, self-phase modulation (SPM),
cross-phase modulation (XPM), and four-wave mixing (FWM) are the most im-
portant. The magnitudes of these effects depend on the ratio np/Aeff , where
ny is the nonlinear refractive index of the fiber and Aet+ the effective area of the
lightmode. It is therefore important to have a simple and accurate method for
the determination of this ratio. Different methods, based on SPM or XPM phase
shift detection using interferometric and non-interferometric schemes have been
proposed [3]. In this chapter, we present a different method based on the in-
terferometric detection of a phase shift using a self-aligned interferometer with
a Faraday mirror. This method has the advantage to be simple and to be all
tiber implementable. Moreover, fluctuations from environmental perturbations
present in the other schemes mentioned above are avoided. Another important
point is the comparison of np/Aeft (section obtained with our method, for
Dispersion Shifted Fibers (DSF), Dispersion Compensating Fibers (DCF), and a
standard Single Mode Fiber (SMF) with the ones obtained by other institutions
on the same fibers. We show that the values found agree quite well with the
results from the different measurement methods employed by the other institu-
tions. In particular (Section we compare our results with the SPM based cw
dual-frequency method [4} 5]. This method with its simple measurement setup,
gives the accurate value of np/Aett according to the measurement conditions

given in Refs. [4]. A brief description of the CW dual method is given and we
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present an interlaboratory fiber nonlinear coefficient measurements for Disper-
sion Shifted Fibers (DSF). The values found are in good agreement among the
two methods.

We demonstrate too (Section[2.2) that our results are independent of the length of
the test fiber (on a 10 km range) even in the presence of large GVD which cause

some problems in other measurement methods [5].

2. In Chapter 3| we analyze the influence of XPM and SPM on the signal propaga-

tion.

o In Section [3.1jlwe present both a theoretical and experimental analysis of the

nonlinear polarization rotation in an optical fiber.

The potential of the nonlinear polarization rotation (NPR) to build ultrafast
devices has been recognized a long time ago and received considerable at-
tention since then. It has been proposed to exploit it for optical switches [6],
logic gates [7], multiplexers [8], intensity discriminators [9], nonlinear filters
[10], or pulse shapers [11]. However, an inherent problem to all these appli-
cations is the stability of the output state of polarization, generally subjected
to fluctuations of the linear birefringence caused by temperature changes
and drafts in the fiber environment. Of course, the same problem was also
encountered in the few experiments dealing with the characterization and
measurement of the NPR itself. In Ref. [12], the fluctuations of the output
polarization were too strong to allow a meaningful measurement of NPR in
a polarization maintaining fiber at 1064 nm, and in Ref. [13] , where 514 nm
light was injected into a 60 m long fiber with a beatlength of 1.6 cm, a com-
plicated arrangement had to be employed for the extraction of the changes
caused by temperature drifts. As the fluctuations become worse for fibers
with a large birefringence, and as the effect of NPR is proportional to the
inverse of the wavelength, it is hard to measure NPR directly in a polariza-
tion maintaining (PM) fiber at the telecom wavelength of 1.55 pm. In this
chapter (Chapter we propose a method for removing the overall linear
birefringence, and therefore also its fluctuations, in a passive way by em-
ploying a Faraday mirror [14] (FM) and a double pass of the fiber under
test. To check how this -nowadays standard- method [15, [16, 17, 18] of re-
moving linear birefringence acts on the NPR, we present also in this chapter
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a simple model to calculate the action of linear and nonlinear birefringence.
Using this model, it is then easy to show that the proposed method removes
the overall linear birefringence only, whereas the nonlinear one, leading to
NPR, remains unchanged. After describing the experimental set-up, the re-
sults of our NPR measurements using a FM are presented also, along with
the predictions from our analytical model. The excellent agreement between
the two demonstrates that using the FM, the overall linear birefringence is
indeed removed completely, allowing to observe the NPR otherwise hidden
within the noisy background of polarization changes due to environmental
perturbations. This result also validates our method for possible implemen-
tation with a variety of other applications like the ones mentioned at the
beginning of this section, with the prospect of drastically increasing their

polarization stability.

e In Section 3.2l we demonstrate all-optical switching at 1.5 pm based on in-
duced nonlinear polarization rotation, in both a polarization maintaining

and a standard telecom fiber.

All-optical switching techniques based on the optical Kerr effect [8| 19, 20,
21, 22, 23] are very attractive in that respect due to the ultrafast Kerr re-
sponse [24)] 25 26] of less than a few fs. Indeed, an all optical Kerr switch
was demonstrated recently to read out a 10 Gb/s channel from a 40 Gb/s
TDM signal [6]. Besides the standard switch parameters like switching ratio,
insertion loss or switching time, the stability of the switch is an important is-
sue. Variations in the input control or signal polarizations as well as changes
of the intrinsic birefringence of the Kerr medium will affect the switch. The
variations of the input signal polarization can be dealt with by adopting a
polarization diversity scheme, like e.g. in Ref. [6]. In order to keep the
switch stable internally, the control pulse polarization should be kept as sta-
ble as possible by using a proper set-up. Moreover, changes in the signal
polarization in the Kerr medium (typically a polarization maintaining PM
tiber) due to changes in the intrinsic fiber birefringence have to be avoided
since they can greatly reduce the extinction ratio of the switch. An active
correction scheme (e.g. a polarization controller [12] with a feedback loop)
is typically not rapid enough to correct the fast, acoustical perturbations, and

may not work at all for large changes due to its limited range of operation.
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To avoid these problems, we use on one hand a non-interferometric and on
the other hand a passive stabilization scheme. In interferometric switches
like Sagnac loops or Mach-Zehnder interferometers (IF), the switching is
based on a phase-shift induced between the two different propagation di-
rections or arms, respectively. If the signal is not carefully launched into an
axis of a PM fiber, it will split into 4 different polarization modes, two in each
propagation direction or interferometer arm, respectively. In addition to the
phase-shift between the two different propagation directions or interferome-
ter arms, additional 'local” phase-shifts between the polarization modes with
the same propagation direction (or within the same IF arm) will degrade the
switch quality. In the switch presented here, this problem is avoided by
uniquely using this ‘local” phase-shift between the two signal polarization
modes in a single fiber, thereby reducing the relevant mode number to two.
Having two modes only, we can then use a passive stabilization scheme that
works both for fast and slow, arbitrarily large changes in the fiber birefrin-
gence. Although in this work an optical fiber is used to induce a nonlinear
phase-shift, it should be noted that the stabilization scheme holds as well for
any other Kerr elements (e.g. semiconductor saturable absorbers SOA).

e In Section 3.3 we present a way to obtain the polarization coupling length,
an important parameter for the PMD probability distribution.

It is well known that single-mode communication fibers are birefringent
and that the orientation and the amount of birefringence are randomly dis-
tributed along the fibers. The corresponding polarization mode dispersion
(PMD) becomes therefore a statistical quantity, and not only its mean value
but also its probability distribution is important to assess the inferred sys-
tem impairments. This distribution depends on two parameters: the (mean)
local birefringence B and the polarization coupling length h, which is the
distance over which the E field looses memory of its initial distribution be-
tween the local polarization eigenstates [27]. In fibers having a length L long
compared to h, the probability distribution is Maxwellian with a mean PMD
value of B, whereas for coupling lengths approaching the fiber lengths, the
PMD statistic can change considerably [28]. It is therefore important to have
knowledge not only of the overall PMD but also of h and the beatlength

Ly. Here we present a novel way to directly infer the polarization coupling
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length from measurements of the nonlinear polarization rotation (NPR) in a
fiber.

3. In Chapter 4] we investigate FWM in optical fibers.

e In Section4.1)we present a novel way to generate photon pairs.

It is well known that pairs of correlated photons entangled in energy and
time can be used as a resource for quantum information processing. Up till
now, photon pairs are mainly created in nonlinear crystals or waveguides,
using parametric down conversion, a nonlinear effect due to the second or-
der susceptibility X(?). In this chapter instead, we propose to create photon
pairs directly in optical fibres, exploiting four wave mixing processes due
to the third order susceptibility x(3). As mentioned at the beginning of the
introduction this term is responsible for FWM, third harmonic generation,
nonlinear refraction. The E dependence of the polarizability reflects on a
power dependence of the refractive index of the fiber, inducing a possible in-
termodulation between different optical signals. If two different signals with
frequencies V1, v are then launched into the fiber, the beatnote of these two
signals modulates the refractive index with a frequency (v2 -v1). Through
this modulation a third signal at the frequency v; will develop sidebands at
the frequencies
vi—+ (V1 —V2) Vi — (V1 —V2)

The situation in fact is much more complex and every possible combination
of the single frequencies can combine with each other. In a quantum repre-
sentation we can say that different photons annihilate to generate new ones
at different wavelengths. Different kinds of FWM are possible. The case in
which three photons with the same frequency annihilate to give rise to a new
one, is called “totally degenerate” FWM; the case of two photons with the
same energy that combines to give rise to two photons different in energy,
is called “partially degenerate” FWM. “Non-degenerate” FWM is present
when all the frequencies are different to each other. It is important to note
that as mentioned above not only energy conservation has to be satisfied
in the FWM process, but even phase matching conditions. For this reason
FWM is referred to as a “parametric process”.

In this chapter we concentrate mainly on “partially degenerate” FWM. In
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this process two pump’s photons are absorbed by the fiber and two photons
are created; one photon at a higher frequency than the pump and one at a
lower frequency. Usually low frequency waves are referred as Stokes waves.
High frequency wave as Anti-Stokes. As mentioned in the former section,
parametric processes are stronger when the process is phase-matched, i.e.
when momentum conservation is valid. It follows that due to the dispersion
of the refractive index, FWM is not always present but only when phase
matching conditions are satisfied. In a SMF fiber this conditions are always
satisfied when we work near Ag, i.e. the wavelength at which the dispersion
is equal to zero. If we consider now a pump at a wavelength near A\g FWM
will create new photons at frequencies distributed symmetrically around the
wavelength of the pump. These photons are generated at the same time so
they are time correlated.

Now the advantage of creating photon pairs directly in optical fibres is that
we can avoid the losses due to the collection of pairs created in an external
source into the fibre. It also allows an all fibre operation, which is much
more practical for “real life” applications (e.g metrology). Unfortunately in
our experiment no photon pairs were detected. This could be due to the low
amount of power injected into the FUT and to the poor quality (i.e. signal to
background ratio) of the DFB laser. At the same time luminescence due to
the glass impurities is covering the signal. Improvements could be obtained
with an Erbium doped ring laser (higher signal to noise ratio and higher
power) and using short lengths of fibers (like photonic crystal fibers).

e In Section 4.2| we report on distributed measurements of chromatic disper-
sion along dispersion shifted fibers with different values of polarization
mode dispersion and coupling lenght, by way of an OTDR-like method

based on four wave mixing.

As mentioned at the beginning because of the long distances and high pow-
ers, optical nonlinearities start to play a significant role in optical fibers.
In dispersion shifted fibers (DSF) four wave mixing whose efficiency de-
pends on the chromatic dispersion profile, leads to transmission impair-
ments. From here arise the necessity to have a technique that can allow to
map the longitudinal distribution of chromatic dispersion along a fiber. The
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method proposed by Mollenauer et al.[29]30] and based on four wave mix-
ing, is a convenient approach for the measurement of chromatic dispersion
maps in DSF fibers. In this chapter we show that when the coupling length h
is relatively large (as is typically the case for most older installed DSF cables)
the method presents severe limits. In the chapter we present a comparison
between DSF fibers with different values of PMD and coupling length and
a model is discussed in order to explain the observed phenomena. We show
too that mapping of chromatic dispersion in DCF fibers, is strongly affected
by the coupling length value present in them.

e In Section {4.3| we report for the first time on distributed measurements of
nonlinear coefficient ny/Aeft along dispersion shifted fiber by way of an
OTDR-like method based on four wave mixing effect.

The utility of such a kind of measurements is pretty clear considering what
we have said at the beginning of the chapter. It is therefore important to have
a simple and accurate method for the determination of this ratio. Different
methods, based on SPM or XPM phase shift detection using interferometric
[23] and non-interferometric [5] schemes have been proposed (see Chapter
). But all these measurements techniques give only the integrated value of
the nonlinear coefficient over the entire length of the fiber under test (FUT).
The only way to obtain a map of the np/ Aetf over the entire fiber length con-
sist in performing a destructive fiber-cutting measurement. In this chapter,
we propose a new method based on an OTDR-like technique firstly pro-
posed by Mollenauer et al. [29]31] to perform distributed measurements of
chromatic dispersion along a fiber. The method allows us to obtain longitu-
dinal mapping of the nonlinear coefficient along a 10 km DSF fiber.

4. In Chapter [5|different works the author was involved with during his Ph.D., and

not only related to nonlinear effects in optical fibers, are presented.

e In Section[5.Ijwe present a a new system combining near-field scanning opti-
cal microscopy (NSOM) with single photon detection operating at the wave-
length of 1.55 um The microscope was used in order to image the splice re-
gion between a standard telecom and an Erbium doped fiber. The excellent
sensitivity also allowed to detect the Rayleigh scattered light of a standard
fiber coming out laterally through the fiber cladding.
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e In Section 5.2l we present a new way to obtain distributed gain measure-
ments in Er-doped fibers with high resolution and accuracy using an optical
frequency domain reflectometer.

e In Section [5.3)we make an analysis of the polarization evolution in a ribbon
cable using high-resolution coherent OFDR.

e Finally in Section [5.4) we present a PMD emulator where the DGD and the
ratio between first and second order PMD can be set by the user.

Finally in the appendixes Bl and |C| are presented all the articles and proceedings
published during the Ph.D. in which the author was actively involved.
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1.2 Introduction (francaise)

Ces derniéres années, I'implémentation des amplificateurs a fibre dopée a 1'erbium a
permis d’étendre les transmissions haut débit aux distances transocéaniques. Malgré
cela, la demande d’augmentation de la capacité des transmissions est sans précédent
et continue de croitre. Il y a différentes facons de combler cette demande, par exem-
ple en augmentant le taux de bits par canaux (time domain multiplexing, TDM) ou
simplement en augmentant le nombre de canaux circulant dans une seule fibre (wave-
length division multiplexing, WDM). Les deux méthodes ont leurs avantages et leurs
inconvénients, mais les effets non linéaires jouent un réle dans les deux cas.

Quelle est donc l'origine de ces effets non linéaires [1]? Un matériau peut étre
vu, de facon simpliste, comme étant constitué d’un ensemble de particules chargées:
des électrons et des ions. Lorsqu’un champ électrique est appliqué sur celui-ci, les
charges se mettent en mouvement. Les charges positives se déplacent dans le sens du
champ et les chargent négatives dans le sens inverse. Dans les matériaux diélectriques
(dans notre cas le verre) les charges ne sont pas libres de se mouvoir, seul un faible
déplacement est permis. Ces petits mouvements de charges (ions dans un sens et
électrons dans l'autre) induisent un moment électrique dipolaire. A cause de la
masse élevée des ions et des hautes fréquences de la lumiere (1013 - 1017 Hz), seul
le déplacement des électrons est significatif. Généralement, on considere que 1’électron
se trouve dans un potentiel linéaire (approximation de Lorentz). Mais dans le cas de
grands champs électriques (c.-a-d. pour des puissances intenses), des harmoniques
d’ordre supérieures doivent étre considérées. La polarisation induite par le champ
électrique ne peut plus étre considérée comme linéaire ; pour la silice elle prend la

forme générale suivante :

P—¢g, (x(l)E+x(3)EEE+ . ) (1.3)

avec gg permittivité du vide et x(I) susceptibilité du j-e ordre. Le terme x(%) est
la contribution prépondérante de la polarisation P et ses effets se traduisent par
l'indice de réfraction n [2]. Le terme du troisieme ordre x(® est a I'origine d’effets
comme la génération de troisieme harmonique, le mélange a quatre ondes (FWM) et
I'indice non linéaire [2]. Les deux premiers processus (processus générant de nou-

velles fréquences) sont généralement négligeables si la condition d’accord de phase
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n’est pas respectée. L'indice non linéaire est au contraire toujours présent et af-
fecte profondément la propagation de faisceaux lumineux intenses dans les fibres op-
tiques. L'onde électromagnétique passant a travers la fibre induit une polarisation du
troisieme ordre qui est proportionnelle au cube du champ électrique (voir Eq. [1.3).
Cela revient a remplacer le terme X par XY + xJE2. En d’autres termes, l'indice de

réfraction évolue comme l'intensité optique [1]].
n(w, 1) =n(w)+nyl (1.4)

Cette dépendance de l'indice de réfraction vis a vis de l'intensité (effet Kerr optique)
est responsable de nombreux effets non linéaires.

Il faut noter que méme si le coefficient non linéaire ny est assez faible, les effets
non- linéaires dans les fibres optiques sont conséquents, car leur intensité dépend de
la longueur de fibre parcourue par 'onde et du rapport np/Aett, ot np est I'indice de
réfraction non linéaire de la fibre et Aeft est 1'aire effective du mode optique. Malgré
les petites valeurs intrinseques du coefficient non linéaire de la silice, les effets non-
linéaires dans les fibres optiques peuvent étre observés méme avec de faibles puis-
sances, car la lumiére est confinée dans une surface relativement petite (env. 80 pm?)
sur de longues distances d’interaction (pour des liaisons transocéaniques comme men-
tionnées au début de I'introduction). C’est pourquoi les effets non linéaires ne peuvent
pas étre négligés lorsque 1’on considere la propagation de la lumiere dans les fibres op-
tiques. Le coefficient non linéaire étant une grandeur physique importante pour tous
les effets non linéaires, le chapitre 2|de cette these présente une mesure originale de ce
parametre.

Une autre manifestation de la dépendance de 1'indice de réfraction vis a vis de l'in-
tensité apparait a travers 'automodulation de phase (self-phase modulation, SPM), ce
phénomene se traduit par un élargissement spectral des pulses optiques se propageant
a travers une fibre [2]. La SPM, comme la plupart des effets non linéaires, n’est pas
nécessairement néfaste, on peut aussi en tirer partie comme par exemple en la combi-
nant avec la dispersion de vitesse de groupe (group velocity dispersion, GVD) pour
réaliser des solitons (c.-a-d. des impulsions se propageant sans se déformer).

Quand il y a co-propagation de deux ondes ou plus, elles peuvent interagir entre
elles de fagon non linéaire dans la fibre. Cette interaction est a 1’origine de nombreux
phénomenes comme la stimulation Raman, la diffusion Brillouin, la génération d’har-

monique et le mélange a quatre ondes.
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L'intermodulation de phase (cross-phase modulation, XPM) est analogue a la SPM;
par contre cette fois-ci la phase induite ne dépend pas seulement de l'intensité de
I'onde considérée mais aussi de celle des autres ondes présentes [2]. L'ampleur de
I’XPM est différente pour le couplage entre deux ondes de fréquences différentes et
de méme polarisation et pour le couplage entre deux ondes de méme fréquence et de
polarisations différentes. Dans le chapitre |3, les deux cas sont abordés et exploités
dans le cadre de I'étude de la rotation non linéaire de la polarisation (section et de
I’élaboration d’un interrupteur tout optique (section 3.2).

Un autre effet non linéaire peut étre conséquent dans les fibres optiques, le mélange
a quatre ondes (four wave mixing, FWM). Ce phénomene n’est pas toujours présent,
et il n’apparait que sous certaines conditions (accord de phase). Cet effet a des
conséquences dévastatrices pour les systemes WDM avec des canaux espacés de facon
réguliere, car les fréquences générées correspondent a des canaux de transmission.
Ceci mene a des dégradations du signal transmis. Le chapitre 4| est dédié a différents
aspects du FWM. On peut 'utiliser pour générer des paires de photons dans des fibres
monomodes (section 4.I), pour obtenir une mesure distribuée de la dispersion chro-
matique de fibres monomodes (section et pour obtenir un profil longitudinal du
coefficient non linéaire dans les fibres (section 4.3).

Le chapitre |5|décrit d’autres travaux que l'auteur a entrepris, mais qui n’ont pas de
relation avec les effets non linéaires dans les fibres optiques. La section |5.1{aborde un
nouveau montage qui accroit trés fortement la sensibilité d’un microscope a champs
proche. La possibilité d’observer le gain d’'un EDFA a 1’aide d"un OFDR est vu dans la
section Dans la section [5.3| on s’intéresse a I’évolution de la polarisation dans une
tibre a ruban. Pour finir, un nouveau type d’émulateur de dispersion des modes de
polarisation est présenté dans la section

Dans la suite de cette introduction, des résumés plus détaillés des différentes parties

sont développés.

1. Dans le chapitre [2, on montre une nouvelle méthode de mesure du coefficient
non linéaire ny/Aess dans les fibres télécoms a 1550 nm.

Comme nous l'avons déja mentionné dans le début de cette introduction,
I'implémentation des amplificateurs a fibre dopée a 'erbium permet des trans-

missions haut débit sur des distances transocéaniques. Dans le méme temps,
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la technique du multiplexage en longueur d’onde (WDM) est utilisée pour ac-
croitre les capacités des transmissions, ce qui mene a une forte augmentation de
la puissance circulant dans les fibres. A cause de ces longues distances et de
ces fortes intensités, les non linéarités optiques causées par les changements de
I'indice de réfraction (effet Kerr optique) commence a jouer un roéle conséquent.
Ce sont 'automodulation de phase (SPM), I'intermodulation de phase (XPM) et
le mélange a quatre ondes (FWM) qui sont prépondérants. L'importance de ces
effets dépend du rapport np/Aeft , ott np est 'indice de réfraction non linéaire
de la fibre et Ae¢t 'aire effective du mode optique. Il est donc important d’avoir
une méthode simple et précise pour la détermination de ce rapport. Différentes
méthodes basées sur la détection de la différence de phase induite par la SPM
ou la XPM utilisant des schémas interférométriques ou non ont été proposés
[3]. Dans ce chapitre, nous proposons une méthode différente basée sur une
détection interférométrique de la différence de phase utilisant un interférometre
auto-aligné grace a des miroirs de Faraday. Cette méthode a 1’avantage d’étre
de réalisation simple et entierement fibrée. De plus, les fluctuations extérieures
présentes dans les autres schémas mentionnés ci-dessus sont éliminées. Un autre
point important porte sur la comparaison des résultats de np/Aets (section
obtenus a l’aide de notre méthode avec ceux d’autres instituts pour les méme
tibres : des fibres a dispersion décalée (dispersion-shifted fiber, DSF), des fibres
a dispersion compensée (dispersion-compensating fiber, DCF) et des fibres stan-
dards monomodes (single-mode fiber, SMF). On montre que les valeurs trouvées
sont en accord avec celles obtenues avec différentes méthodes par les autres in-
stituts. En particulier, dans la section [2.3| nous comparons nos résultats avec la
méthode SPM based cw dual-frequency [4, 5]. Cette méthode, avec son principe
de mesure tres simple, donne des valeurs précises de np/Aetf , sous réserve que
les conditions développées dans la référence [4] soient respectées. Une breve de-
scription de cette méthode est donnée et on présente les résultats d'une mesure
du coefficient non linéaire effectuée sur une fibre a dispersion décalée (DSF). Les

deux méthodes donnent des valeurs qui sont concordantes.

Nous montrons aussi (section [2.2) que nos résultats sont indépendants de la
longueur de la fibre sous test, méme en présence d'une grande dispersion chro-

matique qui cause de nombreux problémes pour les autres méthodes de mesure

[5].
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2. Dans le chapitre [3| on analyse I'influence de la XPM et de la SPM sur la propaga-

tion du signal.

e Dans la section on aborde une analyse théorique et expérimentale de la
rotation non linéaire de polarisation (nonlinear polarization rotation, NPR)

dans les fibres optiques.

Les possibilités de réaliser des dispositifs ultra-rapides a 1’aide de la rotation
non linéaire de polarisation est connue depuis longtemps et recoit donc une
attention toute particuliere. Des propositions ont été faites pour réaliser des
interrupteurs optiques [6], des portes logiques [7], des multiplexeurs [8], des
discriminateurs d’intensité [9], des filtres non linéaires [10] ou des remises
en forme d’impulsion [11]. Cependant, la stabilité de 1’état de polarisation
de sortie est un probléme inhérent a toutes ces applications. Généralement,
on observe des variations de la biréfringence linéaire causées par les change-
ments de températures et les perturbations de 1'environnement de la fibre,
ce qui limite la stabilité souhaitée. Bien stir, ce probleme est aussi ren-
contré dans les expériences traitant de la caractérisation et de la mesure de
la NPR elle-méme. Dans la référence [12], les fluctuations de la polarisa-
tion de sortie étaient trop importantes pour permettre une mesure sensée
de la NPR dans une fibre a maintien de polarisation a 1064 nm, et dans
la référence [13], ot de la lumiere a 514 nm a été injectée dans une fibre
de 60 m avec une longueur de battement de 1.6 cm, un arrangement com-
pliqué a du étre mis en place pour extraire le signal du bruit dt aux dérives
de température. Comme les fluctuations empirent dans les fibres avec les
biréfringences élevées et que 1'effet de la NPR est inversement proportion-
nel a la longueur d’onde, il est difficile d’effectuer une mesure directe de
la NPR dans une fibre & maintien de polarisation et aux longueurs d’onde
télécoms (1.55 pm). Dans ce chapitre (section 3.1), on propose une méthode
pour éliminer totalement la biréfringence linéaire, et donc ses fluctuations,
de fagon passive. On utilise un miroir de Faraday [14] (faraday mirror, FM)
et un double passage dans la fibre sous test. Pour vérifier comment cette
méthode, maintenant courante [15, 16, 17, 18] pour éliminer les effets de la
biréfringence linéaire, agit sur la NPR, on présente aussi dans ce chapitre

un model simple pour calculer I'effet d"une biréfringence linéaire ou non
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linéaire. En utilisant ce model, on montre facilement que la méthode pro-
posée élimine totalement la biréfringence linéaire, alors que la biréfringence
non linéaire, menant a la NPR, reste inchangée. Apres une description du
montage, les résultats obtenus avec notre méthode de mesure de la NPR
utilisant un FM sont présentés ainsi que les prédictions de notre modéle an-
alytique. L'excellent accord entre les deux démontre que 'utilisation du FM
élimine completement les effets de la biréfringence linéaire, ce qui permet
d’observer la NPR, qui autrement aurait été noyée dans le bruit de fond du
changement de la polarisation dti aux fluctuations extérieures. Ce résultat
valide aussi notre méthode pour la réalisation d’autres applications comme
celles précitées, avec la perspective d’augmenter considérablement leur sta-

bilité en polarisation.

e Dans la section[3.2on montre un interrupteur entiérement optique a 1.55 um
basé sur la rotation non linéaire de polarisation, dans une fibre a maintien

de polarisation et dans une fibre standard télécoms.

Les techniques d’interrupteur tout-optique basées sur l'effet Kerr optique
[8, 19, 20, 21} 22, 23] sont trés intéressantes a cause de la réponse ultra-
rapide de l'effet Kerr [24] 25, 26] , de l'ordre de quelques femtosecondes.
En fait, un interrupteur tout optique a effet Kerr a été utilisé récemment
pour extraire un canal a 10Gb/s d"un signal TDM a 40Gb /s [6]. En plus des
parametres courants pour caractériser les interrupteurs comme le taux d’ex-
tinction, les pertes d’insertion ou le temps de transition, la stabilité de 1'in-
terrupteur est un enjeu important. Les variations des polarisations d’entrée
du signal et du contrdle vont affecter 1'interrupteur tout comme les change-
ments de la biréfringence intrinseque du milieu. Les variations de la polari-
sation d’entrée du signal peuvent étre gérées grace a un dispositif insensible
a la polarisation, comme dans la référence [6]. Pour garder l'interrupteur
stable, la polarisation de I'impulsion de contréle doit étre maintenue aussi
stable que possible en utilisant un montage adéquat. De plus, les change-
ments de la polarisation du signal dans le milieu -typiquement une fibre
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a maintien de polarisation (PM)- dus aux variations de la biréfringence in-
trinseque doivent étre éliminés pour ne pas réduire fortement le taux d’ex-
tinction de l'interrupteur. Une correction active (un controleur de polarisa-
tion [12] avec une boucle de contre-réaction) n’est pas assez rapide pour cor-
riger les perturbations rapides et ne fonctionne pas du tout pour de grandes
variations a cause de son domaine d’opération limité. Pour résoudre tous
ces problemes, on utilise d’'une part un montage non-interférométrique et
d’autre part une stabilisation passive. Les interrupteurs interférométriques,
comme les boucles de Sagnac ou l'interféromeétre de Mach-Zehnder, sont
basés sur une différence de phase induite respectivement entre les deux sens
de propagation ou les deux bras. Si le signal n’est pas lancé correctement
dans un des axes de la fibre PM, il se divise en quatre modes de polarisa-
tion différents, respectivement deux dans chaque sens de propagation ou
dans chaque bras. En plus de la différence de phase entre les deux sens
de propagation ou bras de l'interférometre, une différence de phase "locale’
supplémentaire entre les modes de polarisation avec le méme sens de prop-
agation (ou passant par le méme bras) va dégrader la qualité de l'interrup-
teur. L'interrupteur présenté ici résout ce probleme simplement en n’util-
isant que cette différence de marche ” locale ” entre les deux modes de po-
larisation du signal dans la fibre ; ainsi on réduit le nombre de modes a deux.
Ayant simplement deux modes, on peut alors utiliser une stabilisation pas-
sive qui fonctionne pour d’importants changements de la biréfringence de
la fibre, et ce quelle que soit leur vitesse. Bien que dans ce travail une fi-
bre optique soit utilisée pour induire la différence de phase non linéaire, on
peut noter que le principe de la stabilisation marche aussi bien pour tous les
autres milieux Kerr (par exemple les semi- conducteurs absorbant saturables
SOA).

e Dans la partie un moyen d’obtenir la longueur de couplage de la polar-
isation est présenté ; c’est un parametre important pour la distribution de
probabilité de la PMD.

Il est bien connu que les fibres monomodes utilisées dans les communi-
cations ont de la biréfringence et que l'orientation et I'amplitude de la
biréfringence sont distribuées de fagon aléatoire le long des fibres. La dis-

persion des modes de polarisation (PMD) correspondante devient alors une
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quantité statistique, et sa valeur moyenne ainsi que sa distribution de prob-
abilité sont importantes pour évaluer les dégradations causées au systéme.
Cette distribution dépend de deux parametres : la biréfringence locale
moyenne B et la longueur de couplage de polarisation h, qui est la distance
au bout de laquelle le champ E a perdu la mémoire de sa distribution ini-
tiale entre les états propres locaux de la polarisation [27]. Pour les fibres qui
ont une distance L grande comparée a h, la distribution de probabilité est
maxwellienne avec une PMD moyenne de B, alors que pour une longueur
de couplage voisine de la longueur de la fibre la distribution statistique de
la PMD peut changer considérablement [28]. Il est donc important d’avoir
connaissance non seulement de la PMD mais aussi de h et de la longueur
de battement Ly.. Ici, nous décrivons une nouvelle facon de déterminer la
longueur de couplage a partir de mesures de la rotation non linéaire de po-

larisation (NPR) dans une fibre.
3. Dans le chapitre |4, on s’intéresse au FWM dans les fibres optiques.

e Dans la partie on présente une nouvelle fagon de générer des paires de

photons.

Il est bien connu que les paires de photons enchevétrés en énergie et temps
peuvent étre utilisées comme source dans les processus d’information quan-
tique. Jusqu’a maintenant, les paires de photons ont été principalement
créées dans des cristaux non linéaires ou des guides d’onde, en utilisant
la conversion paramétrique qui est un effet non linéaire di a la suscepti-
bilité du deuxiéme ordre X(?. Dans ce chapitre, nous proposons de créer
des paires de photon directement dans les fibres optiques en exploitant un
processus de mélange a quatre ondes d a la susceptibilité du troisiéme or-
dre )((3). Comme nous l’avons mentionné au début de cette introduction, ce
terme est responsable du FWM, de la génération de troisieme harmonique
et de I'indice non linéaire. La dépendance de la polarisabilité avec le champ
E se traduit par une dépendance de l'indice de réfraction avec la puis-
sance, ce qui permet d’'introduire une intermodulation entre les différents
signaux optiques. Alors, si deux différents signaux avec des fréquences vy,
Vo sont lancés dans la fibre, le battement de ces deux signaux module 'indice

de réfraction avec la fréquence (v -v1). A cause de cette modulation, un
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troisieme signal a la fréquence v; va développer des bandes latérales aux
fréquences
V]_—I—(Vl—Vz) V1 — (V]_—Vz)

La situation est en fait plus complexe, car toutes les fréquences peuvent
se combiner les unes avec les autres. Une représentation quantique de la
chose serait que différents photons s’annihilent pour donner naissance a
de nouveaux photons a d’autres longueurs d’onde. Différents types de
FWM sont possibles. Le cas ou trois photons de méme fréquence s’an-
nihilent pour donner naissance a un nouveau photon s’appelle le FWM
“totalement dégénéré”; si deux photons de méme énergie se combinent
pour donner deux photons d’énergie différente on parle de FWM “partielle-
ment dégénéré”. Le FWM “non-dégénéré” correspond au cas ou toutes les
longueurs d’onde seraient différentes. Il est important de remarquer que
non seulement la conservation d’énergie doit étre respectée mais aussi les
conditions d’accord de phase. C’est pour cette raison que le FWM fait partie

des “processus paramétriques”.

Dans ce chapitre, on se concentre essentiellement sur le FWM “partielle-
ment dégénéré”. Dans le processus, deux photons de la pompe sont ab-
sorbés par la fibre et deux photons sont créés; le premier a une fréquence
supérieure a celle de la pompe et le second a une fréquence inférieure.
Couramment 1'onde a basse fréquence est appelée raie Stokes et la haute
fréquence raie Anti-Stokes. Comme on 1’a évoqué précédemment, les pro-
cessus paramétriques sont plus importants lorsque 1’on respecte les condi-
tions d’accord de phase, c’est a dire quand il y a conservation du moment.
Il s’ensuit qu’a cause de la dispersion de l'indice de réfraction, le FWM n’est
pas toujours présent. Dans une fibre mono-mode, l’accord de phase est tou-
jours respecté lorsque 1’on travaille prés de Ag. Sil’on considere maintenant
une pompe a la longueur d’onde Ag,, le FWM crée de nouveaux photons
a des fréquences distribuées de facon symétrique de part et d’autre de la
longueur de pompe. Ces photons sont générés en méme temps et donc sont
corrélés en temps.

L'avantage qu’il y a a créer des paires de photons dans les fibres optiques
réside dans l’élimination des pertes que 1'on peut avoir lorsque 1'on crée

les paires dans une source externe et qu'on les couple dans une fibre. Cela
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permet aussi d’opérer de facon completement fibrée, ce qui est bien plus
pratique dans les applications courantes (par exemple la métrologie). Mal-
heureusement dans notre expérience, aucune paire de photons n’a pu étre
détectée. Cela peut étre di a la trop faible puissance injectée dans la fi-
bre sous test et a la mauvaise qualité du laser DFB. Dans le méme temps,
la luminescence provenant des impuretés du verre couvre le signal. Des
améliorations peuvent étre apportées avec un laser erbium en anneau (un
meilleur rapport signal sur bruit et une plus grande puissance) et en util-

isant de courts morceaux de fibres (comme des fibres a cristal photonique).

e Dans la section on aborde une mesure distribuée de la dispersion chro-
matique le long de fibres a dispersion décalée avec différentes valeurs de
dispersion de mode de polarisation et de longueur de couplage, en utilisant

une méthode similaire a un OTDR, basée sur le mélange a quatre ondes.

Comme mentionné précédemment, les non linéarités optiques commencent
a jouer un role significatif dans les fibres optiques a cause des distances par-
courues et des fortes puissances. Dans les fibres a dispersion décalée (DSF),
le mélange a quatre ondes, dont l'efficacité dépend du profil de la disper-
sion chromatique, mene a des erreurs de transmission. C’est pourquoi il est
nécessaire d’avoir une technique qui permet d’obtenir la distribution longi-
tudinale de la dispersion chromatique le long de la fibre. La méthode pro-
posée par Mollenauer et al.[29] 30] et basée sur le mélange a quatre ondes
est une bonne approche pour la mesure distribuée de la dispersion chro-
matique dans les fibres a dispersion décalée. Dans ce chapitre, on mon-
tre que lorsque la longueur de couplage h est relativement grande (comme
c’est généralement le cas pour la plupart des vieux cables DSF installés) la
méthode présente de séveres limites. Dans le chapitre, on montre une com-
paraison entre plusieurs fibres DSF avec différentes valeurs de PMD et de
longueur de couplage, et un model est élaboré pour tenter d’expliquer les
phénomenes observés. On montre aussi que la distribution longitudinale de
la dispersion chromatique dans les fibres DCF est fortement affectée par leur

longueur de couplage.

e Dans la section on montre pour la premiere fois une mesure distribuée
du coefficient non linéaire np/ At le long de fibres a dispersion décalée en

utilisant une méthode similaire a un OTDR, basée sur le mélange a quatre
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ondes.

L'utilité d"une telle mesure est assez évidente au vu de tout ce que I'on a dit
au début de ce chapitre. C’est pourquoi il estimportant d’avoir une méthode
simple et précise de mesure pour la détermination de ce rapport. Différentes
méthodes basées sur la détection de la différence de phase induit par la SPM
ou la XPM, utilisant des schémas interférométriques [23] ou non [5], ont été
proposées (voir chapitre 2). Mais toutes ces techniques ne donnent que la
valeur du coefficient non linéaire intégrée sur toute la longueur de la fibre
sous test (FUT). Le seul moyen d’obtenir un profil de np/Ae¢f le long de la
fibre est destructif, il faut couper la fibre en petits bouts. Dans ce chapitre, on
propose une nouvelle méthode similaire a une technique élaborée par Mol-
lenauer et al. [29, 31] pour réaliser une mesure distribuée de la dispersion
chromatique le long de la fibre. La méthode nous permet d’obtenir un profil
longitudinal du coefficient non linéaire le long d"une fibre DSF de 10 km.

4. Dans le chapitre 5, différents travaux réalisés par I’auteur au cours de sa these et
n’ayant pas de rapport avec les effets non linéaires dans les fibres sont présentés.

e Dans la section on présente une nouvelle méthode combinant micro-
scopie de champ proche a balayage (NSOM) avec détection de photon
unique travaillant a la longueur d’onde de 1.55 um Le microscope a été
utilisé pour réaliser I'image de la soudure entre une fibre standard et une fi-
bre dopée a I’erbium. L'excellente sensibilité permet de détecter la diffusion

Rayleigh de la fibre standard sortant latéralement a travers la gaine.

e Dans la section[5.2Jon présente une nouvelle fagon d’obtenir une mesure dis-
tribuée du gain dans les fibres dopées a 1’erbium avec une haute résolution
grace a un OFDR (optical frequency domain reflectometer).

e Dans la section 5.3|on fait I’analyse de I’évolution de la polarisation dans un
ruban de fibre en utilisant un OFDR.

e Finalement, dans la section[5.4/on présente un émulateur de PMD oi1 le DGD
et le rapport entre PMD du premier et du deuxieme ordre peut étre choisi

par l'utilisateur.

A la fin, les appendices [B| et |C| présentent tous les articles et proceedings publiés

pendant la these dans les quel I'auteur s’est activement investi.






Chapter 2

Determination of the Nonlinear
Coefficient in Optical Fibers.

2.1 Measurements of no/Acss in SMF fibers

In this section we demonstrate a method for the measurement of the nonlinear coeffi-
cient np/Aeft in telecom fibers at 1550 nm. This method is based on the Kerr phase
shift detected by a self-aligned interferometer incorporating a Faraday mirror. This
makes the set-up very robust, and different test fibers can be measured without any

further readjustments.

2.1.1 Introduction

The implementation of Erbium-doped fiber amplifiers allows for high-bit rate trans-
mission over transoceanic distances. At the same time, the technique of wavelength
division multiplexing (WDM) is used to increase the transmission rate, leading to an
important amount of power inside the fiber. Because of the long distances and high
powers, optical nonlinearities due to changes in the refractive index (optical Kerr ef-
fect) start to play a significant role. Among them, self-phase modulation (SPM), cross-
phase modulation (XPM), and four-wave mixing (FWM) are the most important. The
magnitudes of these effects depend on the ratio np/Aett , where ny is the nonlinear
refractive index of the fiber and Ae¢r the effective area of the lightmode. It is therefore
important to have a simple and accurate method for the determination of this ratio.
Different methods, based on SPM or XPM phase shift detection using interferometric

and non-interferometric schemes have been proposed [3]. In this chapter, we present

25
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a different method based on the interferometric detection of a phase shift using a self-
aligned interferometer with a Faraday mirror. This method has the advantage to be
simple and to be all fiber implementable. Moreover, fluctuations from environmental

perturbations present in the other schemes mentioned above are avoided.

2.1.2 Principle of operation

The power dependence of the refractive index leads to a power dependent phase
change @ of a pulse (peak power P, wave number k) traveling through a fiber of length
L:

P
®(P) = @ + @i = nokL + NgKLeff5—m (2.1)
Actf

Fiber losses are accounted for by the effective length Letf = 1/a [1-exp(-a L)], with
fiber loss coefficient a. The polarization parameter m depends on the polarization
characteristics of the test fiber and the signal polarization state. It is equal to 1 for the
case of a polarization maintaining fiber if the light is coupled into one of the two axes
[32], whereas for a sufficiently long standard telecom fiber with a complete scrambling
of the polarization, it was demonstrated that m=8/9 [33]. Using Eq. , a measure
of the acquired phase shift will allow to determine the ratio np/Aeff or, through an
independent measurement of Aetf, the value of np. The phase shift is measured using
the self-aligned interferometer shown in Fig. Amplified laser pulses are split at the
tirst coupler (coupling ratio (a/(1-a)). They then move along the two interferometer
arms, which are different in length so that the two pulses do not interfere upon recom-
bination at the second coupler (coupling ratio 3/(1-B)). One of the exit arms of this last
coupler is connected to the fiber under test (FUT) of which np/Aes¢ is to be measured.
For an adequate choice of a and 3, the two pulses in the FUT strongly vary in power,
and consequently experience (according to Eq. (2.1)) a different amount of phase-shift.
After being reflected at the Faraday mirror (FM) [14,16], the pulses return back through
the FUT towards the first coupler. Four different trajectories through the interferome-
ter are possible during the go- and return path: a double pass of the long-arm (long-
long), of the short-arm (short-short), and a forward pass of the short (long) arm with
a return pass through the opposite arm (short-long and long-short, respectively). Due
to the differences in path length, three different arrival times at the detector can be
discerned, as is schematically shown in the inset of Fig. Only the middle pulse,
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that is due to the interference between short-long and long-short pulses, is interesting
and will be further analyzed. Its power at the detector depends on the phase relation-
ship between the two interfering signals, and it can therefore be exploited to calculate
the nonlinear phase-shift experienced in the FUT. Note that contrary to regular Mach-
Zehnder interferometers, the balancing of the interferometer arms is not critical as the
path lengths of the two interfering signals are automatically matched (self-aligned).
Obviously, the power of this middle pulse also depends on the polarization states of
the two interfering signals, given by

[WLs >= Rg (Rej1FReuT)RL|Wo >= Rg'FRL|Wo >=: Al > (2.2)

lWsL>= R YR+ FReuT)Rs|Wo >= R FRg|Wo >=: B|yo > (2.3)

for the long-short and short-long path, respectively. Y is the input state of polariza-
tion, and R, Rs, RryT, and F are the transformation operators for the long- and short
arm, the FUT, and the FM, respectively. The use of a FM as a reflector removes polar-
ization transformations of the FUT, thereby fixing its output polarization. Note that
using a standard mirror in place of the FM, an additional PC would be required, which
not only makes the initial adjustments painful, but also leads to an undesired FUT de-
pendence. For optimum visibility, one needs full interference between the two signals,
i.,e. A=Bin Eq. and Eq. (2.3), which can be obtained by properly adjusting the
PC such that R| = Rs. In practice, this is done by setting the PC so that the output in-
tensity is maximized for a low input pulse power and with the FM directly connected
to the interferometer (i.e. no FUT and therefore no nonlinear phase-shift is present).
This setting can then be used throughout the measurements, without the need for re-
adjustments as long as there is no significant change in R or Rs. Using the described
adjustment, the detected power becomes proportional to

PouT(P) O Pcog(Ag) (2.4)

where A@is the difference between the nonlinear phase shifts acquired by the short-

arm and long-arm pulses, and it is equal to

AG(P) = ZA—”PLeff(a _ B)mA% 2.5)



Chapter 2 Determination of the Nonlinear Coefficient in Optical Fibers. 28

Pulse I
Generator L-L

long arm

PC
OO0
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Figure 2.1: Experimental setup of the self-aligned interferometer. DFB distributed feedback laser,
EDFA Erbium doped fiber amplifier, PC polarization controller, FUT fiber under test, FM Faraday mir-
ror, D detector.
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Straightforward calculation shows that for maximum visibility of the detected sig-
nal, one of the two couplers has to be symmetric (50/50). In order to obtain a good
accuracy for np/Aetf, the measurements are done for different launch powers P. Ide-
ally, the length of the FUT is long enough to allow for a good polarization scrambling
and to be able to detect the first zero pass at A@ = 11/2 for the available launch power.

2.1.3 Experimental

The procedure needed to perform the measurements is the following. First of all a
calibration of the photodiode and a measurement of the real power sent into the fiber
has to be made. In order to do this we have to measure the power from the DFB laser.
We do this by using a power meter and measuring the average power for different
pulse widths and frequencies in order to check if the power meter is responding lin-
early with these two parameters. Once linearity is established we calculate the peak
power of the laser. If we know now the value of the peak power we can calibrate the
photodiode we are using in our setup. To do this we the output of the DFB laser di-
rectly onto the photodiode by passing first through a variable attenuator. For different
attenuation values we measure the voltage detected at the photodiode and knowing
the input power value (determined before) we can find the conversion function from
Watts to Volts. When we have the calibration function of the photodiode we can use
it to determine the peak power at the entry of our interferometer. Of course higher
attenuation during the experiment have to be used due to the high values of the peak
power reached after the EDFA. The measurements on the fibers are made in the follow-
ing way. For different values of amplification (i.e. current set on the EDFA) we measure
the peak power value at the exit of the interferometer. But of course we have to take
into account that the effective area of the fiber that makes up the interferometer could
be different from the one of the FUT. That implies that an amount of power different
from the measured one at the entry of the interferometer, is coupled into the FUT. So
we have always to check the coupling loss between the different components of the in-
terferometer (i.e. Faraday mirror and exit of the interferometer) and the FUT. Another
parameter we have to measure is the attenuation loss of the FUT. This is measured by
means of an OTDR. Taking into account all this parameter we obtain an effective length
different from the real one. This is the value that has to enter the fitting function of our
data. Once we have collected different experimental data changing the power at the

entry of the fiber (current) we have to find out to which power these different points
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correspond to. To do this we can measure it at the second exit of the last coupler of the
interferometer (if we have two photodiodes) or just by removing the FUT and measur-
ing there the input power sent into the FUT. These procedures have to be repeated at
least three times in order to accumulate enough statistics. For each measurement the
calibration procedure has to be repeated in order to increase the accuracy. In fact the
power seems not to be stable with respect to of time for the same current value at the
exit of the EDFA.

2.1.4 Results and discussion

For the practical implementation of the above concept, we use a directly modulated
DFB laser diode with a wavelength of 1559 nm and consecutive amplification by an
EDFA. The pulse duration is 28 ns with a repetition rate of 1 kHz. Note that in some
fibers, such pulses can excite acoustic waves through electrostriction, leading to erro-
neous np/Aeff values - a laser source with shorter pulses should be used to avoid this
risk. For the couplers, a 50/50 ratio is used for the first one and a 90/10 for the sec-
ond. Fig.[2.2displays the interference signal as a function of the launch power P for a
standard telecom fiber (SMF) with a length of 1100 m used as FUT. The experimentally
obtained values (squares) are fitted using Eq. (solid line). The data corresponds
well with the model (statistical x?= 3-1073). As can be seen, the signal slowly increases
reaching a maximum value at 1.4 Watts. For higher powers the nonlinear phase shift
becomes more important and the signal decreases reaching a null value at 3.4 Watts
corresponding to a full 11/2 phase shift. From the fit we obtain a value of (2.76 £ 0.04)
10710 W1 for the nonlinear coefficient ny/Actf . Having found with the refracted-
near-field method [34] a value of (88 + 3) pm? for Aett, the nonlinear refractive index
no becomes (2.4 + 0.1) 10729 m?/W.

2.1.5 Conclusion

In this section we have demonstrated a simple method for the measurement of the
nonlinear coefficient np/Aeff based on an all fiber, self-aligned interferometer. The
self-alignment characteristic not only allows for an easy and quick initial adjustment
of the interferometer, but along with the use of a Faraday mirror also makes it robust
against environmental perturbations. Moreover the double-pass configuration allows
to characterize shorter span of FUT compared to single-pass implementation. This
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Figure 2.2: Detected interference signal power as a function of launch power. Measured data (squares),
theoretical fit (solid line).

leads to a good accuracy for the measured np/Aeft values. The proposed method is
well suited to routinely measure the nonlinear coefficient, as due to the FM the fiber
under test can be easily exchanged without necessitating any further readjustments of

the interferometer.
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2.2 Measurements of no/Acs+ in SME DSF and DCF
fibers

In this section we present measurements of the nonlinear coefficient np/Aeft for stan-
dard SMF, DSE, and DCEF fibers, using a method based on the detection of the Kerr
phase shift by a self-aligned interferometer (see previous section). The presence of a
Faraday mirror in the interferometer makes the set-up very robust, and different test
fibers can be measured without any further readjustments. Interlaboratory compar-
isons show that the values found with our method are in good agreement with the
other ones. Moreover an analysis of a SMF fiber with large chromatic dispersion shows
a good reproducibility of the np/Aeff measurements as a function of fiber length.

2.2.1 Introduction

As mentioned before in section there are different methods to measure no/Aett ,
based on SPM or XPM induced phase shift detection [2] using interferometric and non-
interferometric schemes. The interferometric detection scheme [32] presents the advan-
tage that it can be implemented more easily. But a disadvantage is its susceptibility to
environmental perturbations that leads to a poor stability. In our setup we obtained a
considerable improvement of this technique by using a self-aligned interferometer [35]
with a Faraday mirror. This method has the advantage to be simple and all fiber im-
plementable. The fluctuations due to the environmental perturbations are completely
removed [23]. In this chapter we compare the values of np/Aeff obtained with our
method, for Dispersion Shifted Fibers (DSF), Dispersion Compensating Fibers (DCEF),
and a standard Single Mode Fiber (SMF) with the ones obtained by other institutions
on the same fibers. Our values are found to agree quite well with the results from the

different measurement methods employed by the other institutions.

2.2.2 Principle of operation

The experimental setup and the principle of operation is described in Section A
sligthly modified version of the setup is shown in Fig.
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FUT

short arm

Figure 2.3: Experimental setup of the self-aligned interferometer. DFB distributed feedback laser,
EDFA Erbium doped fiber amplifier, PC polarization controller, FUT fiber under test, FM Faraday mir-
ror, D detector.).

2.2.3 Results

ny/Aett was measured for five different fibers comprising SMF, DSF, and DCF of
different lengths. The fibers’ parameters are listed in Tab. 2.1] and Tab. Fibers
DSF-1 and DSF-2 were also measured at NTT [36] utilizing the self-phase modulation
based cw dual-frequency method [5, 4]. Fibers NIST-B and NIST-C were measured
by six different institutions using the CWDF method and the pulsed method using
different fiber lengths and laser wavelengths. Results regarding this North-American
round robin were published in [37]. A typical result for a single measurement with
our method is shown in Fig. The FUT was Fiber G-1 with a fiber length of 2231
m. The interference signal power detected at the exit of the interferometer is plotted
as a function of the launch input power P. The experimental values (open circles) are
increasing almost linearly in the beginning, demonstrating that nonlinear effects are
of little importance up to launched powers of about 0.5 Watt. Then they set in quite
heavily, and the measured power eventually starts to decrease with increasing launch

power. The maximum of the interference signal power is reached at a launch power of
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Figure 2.4: Detected interference signal power as a function of launch power: (open circles) measured
data, (solid line) theoretical fit (Eq. (2.4)).

0.8 W, whereas a null value, corresponding to a full 1T1/2 nonlinear phase shift, is ob-
tained for 1.9 W. From this value, np/Aeft can be calculated using Eq. . However,
we always fitted all the points as the precision is much better. For each fiber three
to four different measurements were taken on different days in order to test the re-
producibility of our method. The corresponding results are summarized in Table 2.1
Note that the maximum absolute deviation from the average (MD) is used to charac-
terize the reproducibility. Generally the reproducibility is quite good (<10%) although
it varies somewhat from fiber to fiber (see Table[2.1jand Table[2.2). Table[2.2]reports the
values found by the other laboratories. For the NIST fibers [37], the standard deviation
among the np/Aefs values of the six different round robin participants is given. As
one can see the agreement with our values is quite good (with a deviation < 15% in the
worst case). For the NTT fibers [36], the standard deviation of different measurements
(using the same measurement method) is given. Once more the agreement with our
values is good (<5%). For all measurements of both the NIST and NTT comparison,
the deviation of our values are within the error bars. When looking at the maximum
deviation of our measurements it is striking that for the NIST-C fiber the value is much
larger. A reason for this might be that the GVD in this DCF fiber is much higher. In fact
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Figure 2.5: Nonlinear coefficient measured for different lengths of the same fiber (G-1).

some methods [5] were found to be very sensitive to the fiber’s length for large values
of the chromatic dispersion. Therefore, it is interesting to analyze the reproducibility
of our method in a large GVD fiber as a function of the fiber length. Consequently we
made cut-back measurements of np/Aett for a SMF (G-1) changing the length from
12 km to 2 km. For each length at least 3 measurements were taken. The results are
reported in Fig. The overall standard deviation is only 6%, i.e. a similar amount
as the maximum fluctuations for a fixed length (see Table . Also, no trend of the
ny/Aett values as a function of fiber length can be found, demonstrating that our
method is insensitive to the fiber length (in a range of around 10 km) even for large
values of chromatic dispersion.
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Fiber Length | Ao | Aeff (Mm? | nz2/Aets (VALUE) | ny/Aets (MD)
(m) (nm) 10~ 0w-1 10~ 0w—1
G-1 (SMF) 11840 | 1302 - 3.6 5%
DSF-1 (DSF) | 1990 | 1556.4 44.5 6.4 2%
DSF-2 (DSF) | 1990 | 1548.6 41.1 6.3 5%
NIST-B (DSF) | 1563 - 52.2 4.3 2%
NIST-C (DCF) | 1010 - 20.2 15.6 11%

Table 2.1: Values of na/Aet¢ for different fibers as measured with the selfaligned interferometric
method.

Fiber Length Ao Aett (Um? | na/Aett (VALUE) | na/Aett (MD)
(m) (nm) 10-10w-1 10~ 10w-1
DSF-1 (DSF) 1990 | 1556.4 445 6.3 5%
DSF-2 (DSF) 1990 | 1548.6 41.1 6.6 5%
NIST-B (DSF) | 1563 - 52.2 4.3 14%
NIST-C (DCF) 1010 - 20.2 134 15%

Table 2.2: Values of ny/Ae for different fibers as measured by other institutions.

2.2.4 Conclusion

In this section we have presented a simple and stable method for the measurement
of the nonlinear coefficient np/Aett based on an all fiber, self-aligned interferome-
ter. Due to its robustness against environmental perturbations, and its ease of adjust-
ment, the proposed method is well suited to routinely measure the nonlinear coeffi-
cient. The presence of the FM allows to easily exchange the FUT without necessitating
any further readjustments of the interferometer. An inter-laboratory comparison of the
ny/Aeff measurements on the same test fibers showed good agreement of our results
with the others. Moreover, our method seems to be independent of the fiber’s length
on a range of 10 km even in the presence of large GVD, known to cause problems with

some of the other measurement methods.
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2.3 Interlaboratory measurements of np/Ac¢¢s of standard
SMF and DSF fibers

In this section we present interlaboratory measurements of the nonlinear coefficient
ny/Aets for standard SMF and DSF fibers. Two different measurement methods were
used by two different groups. One of the method is based on the detection of the Kerr
phase shift by a self-aligned interferometer (see previous sections). The other method
is an SPM based cw dual-frequency method. Interlaboratory comparison shows that
the values found with the two methods are in good agreement.

2.3.1 Introduction

There are different methods to measure np/Aetf, based on SPM or XPM induced phase
shift detection using interferometric and non-interferometric schemes [2]. The interfer-
ometric detection scheme [32] presents the advantage that it can be implemented more
easily. But a disadvantage is constituted by its susceptibility to the environmental per-
turbations that leads to a poor stability. With one of the setups presented here we
reached a considerable improvement of this technique by using a self-aligned interfer-
ometer [35] with a Faraday mirror. This method [23] has the advantage to be simple
and all fiber implementable and the fluctuations due to the environmental perturba-
tions are completely removed. On the other hand, non-interferometric schemes have
the disadvantage that their measurement accuracy strongly depends on the measure-
ment conditions. However, the SPM based cw dual-frequency method [4, 5], with its
simple measurement setup, gives accurate value of ny/Aefs according to the mea-
surement conditions given in Refs. [4] and [6]. A description of the interferometric
method (method A) is given in the preceding sections. A brief description of the CW
dual method (method B) is given in the next section and we present an interlaboratory
tiber nonlinear coefficient measurements for Dispersion Shifted Fibers (DSF).

2.3.2 Self aligned interferometer method

The experimental setup and the principle of working is illustrated in Section This
method is hereafter referred to as method A.
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2.3.3 SPM based CW dual-frequency method

When two intense signals with wavelength separation of AA are launched into a fiber,
SPM acts on the beat envelope to create sidebands in the frequency domain. Then, the
optical power ratio of the input signals (Ip) to the first sideband (Iy) is related to the
nonlinear phase shift gsppm. When the chromatic dispersion is negligible, this relation-

ship can be expressed as (4) using n-th order Bessel function Jp.

lo _ J(9spm/2) + 37 (9spm/2)
l1 Jf(espm/2) + 35(9spm/2)

(2.6)

Moreover, the relationship between @spy and nonlinear coefficient can be expressed as

4m no
= —LleffP—— 2.7
Pspm = ~-Lef Aot (2.7)

where P shows the average launched power. Thus, the nonlinear coefficient can be
obtained by measuring the optical power ratio Ig/I; with various launched power ac-
cording to the measurement conditions given in Refs. [4] and [5]. The setup of the
SPM based cw dual-frequency method is shown in Fig. This method is hereafter
referred to as method B.

2.3.4 Experimental results

The measurements were done on three different fibers. A DSF fiber with Ag =
1556.4 nm, S=0.067 ps/ nm?/km (DSF-1), a DSF fiber with Ag = 1548.6 nm, 5=0.060
ps/ nm?/km (DSE-2), and a standard single mode fiber with Ag = 1300 nm (G-1). Fibers
DSEF-1 and DSF-2 were also measured at NTT utilizing the self-phase modulation based
cw dual-frequency method. For each fiber different measurements were taken on dif-
ferent days in order to test the reproducibility of our measurements. The correspond-
ing results are summarized in Tab. 2.3|for method A. Note that the maximum absolute
deviation from the average (MD) is used to characterize the reproducibility. Generally
the reproducibility is quite good (j5%) although it varies somewhat from fiber to fiber
(see Tab. 2.3). Tab. reports the values found with method B. Here instead of the
MD, the standard deviation (SD) of different measurements is given. As one can see,
the values are in good agreement with differences within the experimental errors. Us-
ing method A measurements were then performed as a function of the fiber length.
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Figure 2.6: Experimental setup of the SPM based cw dual-frequency method. PC polarization con-
troller, EDFA Erbium doped fiber amplifier, BPF Band pass filter, ATT Variable attenuator, PM Power
meter, OSA Optical spectrum analyzer, FUT fiber under test. PM1 is used to monitor the power at the
entry of the FUT and PM2 to monitor the back-reflected power along the FUT due to Brillouin scattering.
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Fiber Length | Ao | Aeff (Um?) | n2/Aett (VALUE) | na/Aets (MD)
(m) (nm) 10~ 0w-1 10~ 10w—1
DSF-1 (DSF) | 1990 | 1556.4 44.5 6.4 2%
DSF-2 (DSF) | 1990 | 1548.6 41.1 6.3 5%

Table 2.3: Values of ny/Aets for different fibers as measured with the selfaligned interferometric
method. For the values measured with method A, the maximum absolute deviation from the average
(MD) is used to characterize the reproducibility. For method B the standard deviation is shown.

Fiber Length | Ao | Aefr (Um?) | n2/Aett (VALUE) | na/Aets (MD)
(m) (nm) 10~ 0w—1 10~ 0w—1
DSF-1 (DSF) | 1990 | 1556.4 44.5 6.3 5%
DSF-2 (DSF) | 1990 | 1548.6 41.1 6.6 5%

Table 2.4: Values of ny/Aes+ for different fibers as measured by NTT. For the values measured with
method A, the maximum absolute deviation from the average (MD) is used to characterize the repro-
ducibility. For method B the standard deviation is shown.

We made a fiber cut-back procedure and for each fiber length we measured the non-
linear coefficient on a standard telecom fiber (G-1) with lengths ranging from 12 km
to 2 km. For each length at least 3 measurements were taken in order to acquire some
statistics and to find the error bars. All values are within a standard deviation of 6%
demonstrating that method A is insensitive to the fiber lengths even for large values of

chromatic dispersion.

2.3.5 Conclusion

In this section we have presented an interlaboratory comparison of np/Aeff measure-
ments on the same test fibers as measured by two different institutions using different
methods, an interferometric method and a cw dual-frequency method. Good agree-

ment between the measured values was found.



Chapter 3

Nonlinear Polarization Rotation and
Optical Switching in Optical Fibers.

3.1 Nonlinear Polarization Rotation in Optical Fibers

In this section we present both a theoretical and experimental analysis of the non-
linear polarization rotation in an optical fiber. Starting from the coupled non-linear
Schrodinger equations an analytical solution for the evolution of the state of polar-
ization, valid for fibers with large linear birefringence and quasi cw input light with
arbitrary polarization, is given. It allows to model straightforwardly go-and-return
paths as in interferometers with standard or Faraday mirrors. In the experiment all the
fluctuations in the linear birefringence, including temperature and pressure induced
ones, are successfully removed in a passive way by using a double pass of the fiber
under test with a Faraday mirror at the end of the fiber. This allows us to use long
tibers and relatively low input powers. The match between the experimental data and
our model is excellent, except at higher intensities where deviations due to modulation

instability start to appear.

3.1.1 Introduction

The potential of nonlinear polarization rotation (NPR) to build ultrafast devices has
been recognized a long time ago and received considerable attention since then. It has
been proposed to exploit it for optical switches [6], logic gates [7], multiplexers [§],
intensity discriminators [9], nonlinear filters [10], or pulse shapers [11]. However, an

41
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inherent problem to all these applications is the stability of the output state of polariza-
tion, generally subjected to fluctuations of the linear birefringence caused by tempera-
ture changes and perturbations in the fiber environment. Of course, the same problem
was also encountered in the few experiments dealing with the characterization and
measurement of the NPR itself. In Ref. [12], the fluctuations of the output polarization
were too strong to allow a meaningful measurement of NPR in a polarization main-
taining fiber at 1064 nm, and in Ref. [13] , where 514 nm light was injected into a 60 m
long fiber with a beatlength of 1.6 cm, a complicated arrangement had to be employed
for the extraction of the changes caused by temperature drifts.

As the fluctuations become worse for fibers with a large birefringence, and as the ef-
fect of NPR is proportional to the inverse of the wavelength, it is hard to measure NPR
directly in a polarization maintaining (PM) fiber at the telecom wavelength of 1.55
um. In this work we propose a method for removing the overall linear birefringence,
and therefore also its fluctuations, in a passive way by employing a Faraday mirror
[14] (FM) and a double pass of the fiber under test. To check how this -nowadays
standard- method [15| (16, 17, (18] of removing linear birefringence acts on the NPR,
we develop in Subsection of this section a simple model to calculate the action
of linear and nonlinear birefringence. Using this model, it is then easy to show that
the proposed method removes the overall linear birefringence only, whereas the non-
linear one, leading to NPR, remains unchanged. After describing the experimental
set-up, the results of our NPR measurements using a FM are presented in Subsection
3.1.3, along with the predictions from our analytical model. The excellent agreement
between the two demonstrates that using the FM, the overall linear birefringence is
indeed removed completely, allowing to observe the NPR otherwise hidden within
the noisy background of polarization changes due to environmental perturbations.
This result also validates our method for possible implementation with a variety of
other applications like the ones mentioned at the beginning of this subsection, with the
prospect of drastically increasing their polarization stability.

3.1.2 Theoretical background

In a dielectric medium, an intense elliptical input pulse induces birefringence - via
the optical Kerr effect - due to the different amounts of intensity along the major and
minor axis of the polarization ellipse. It is well known that in isotropic media, this self-

induced birefringence leads to a rotation of the polarization ellipse while propagating
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(b)

Goinn

Figure 3.1: Evolution of the state of polarization as represented on the Poincare sphere. (a) Polarization
ellipse self rotation in an isotropic medium. The Stokes vector is rotating around the 03 axis with an
angle proportional to the length of the medium, the input intensity, and the sin of the input ellipticity.
(b) High birefringence fiber. The rotation of the Stokes vector mainly consists of a fast rotation around
the axis of linear birefringence 0g, whereas the slow rotations due to the nonlinear birefringence can be
considered as small perturbations.
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in the medium [38, 39] (the effect is consequently often called polarization ellipse self-
rotation and its representation on the Poincare sphere is shown in Fig. a). In fact,
measuring this ellipse rotation is one of the standard ways to evaluate the cubic optic
nonlinearity of the medium [24]. In an optical fiber however, the situation becomes
more complicated as there is also the local intrinsic birefringence to be considered.
Generally, the polarization ellipse changes are hard to predict in that case as the linear
and nonlinear birefringence interact in a complicated manner.

To formulate this more precisely, we start with the coupled non-linear Schrédinger
equations describing the propagation of light in an optical fiber. For cw input light,
time derivatives drop out, and we can write the equation in a form similar to that of
Menyuk [40] when assuming a lossless, linearly birefringent fiber and by neglecting

polarization mode coupling:
0P =—i(wBog+wa <oz >y03)P; B>>a (3.1)

W = (E1,Ep)! is the Jones column vector representing the two components of the com-
plex transverse electric fields E1(z) and E»(z) at the position z along the fiber. The first
term on the right hand side describes the linear birefringence, where w is the optical
frequency and B the birefringence (in s/m). Note that B is assumed to be indepen-
dent of w, an excellent approximation for standard fibers. The phase birefringence wB
is multiplied by 0g = 01€0S(8) + 02Sin(8), corresponding to linear birefringence in
the 0 direction, with 017 3 being the 2x2 Pauli matrices. The second term on the right

. . . . . - n>P
hand side of Ezq 1} accounts for the nonlinear birefringence, with o = 30,2%”' and
< 03 >y,= % P is the total light power, n, the nonlinear refractive index, Aeft

the effective mode area, and ¢ the speed of light.

For an intuitive understanding of the action of the two terms on the right hand side
of Eq. (3.1), it is better to revert to the Stokes formalism. On the Poincare Sphere, the
tirst term describes a rotation of the polarization vector (Stokes vector) around axis Og,
lying on the equator and corresponding to linear birefringence. Similarly, the second
term is a rotation around the vertical axis corresponding to nonlinear birefringence.
However, Eq. shows that the speed and the rotation direction in this case depends
on the polarization state through < a3 >y, as is illustrated in Fig. [3.1(b). Consequently,
the two rotations are linked in a complicated manner, and the resulting evolution of
the polarization vector is not obvious.

Fortunately, in standard telecom fibers, the speed of rotation around the vertical
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axis is much smaller than the one around the birefringent axis 0g even at considerable
power levels. This is because in such fibers B >> o (see Eq. (3.1)). For example, a fiber
with a beat length of 10 m has B~ 0.5 ps/km while a ~ 0.006 ps/km for a power of 10
Watts (A=1550 nm, ny=3.2-10729, Act=60 um?) (note that in this work, a PM fiber will
be used with a beat length in the mm range, making the ratio g as large as 107). The
slow rotation due to the nonlinear birefringence can therefore be treated as a perturba-
tion that merely changes the angular frequency of the fast rotation caused by the linear
birefringence. This becomes more obvious by rewriting Eq. as

: .1
0 = —iwBogyP — |m§(< 03>y 03+ (1- <Og, 1 >y Og 17— <Op >y Tg))P  (3.2)

where the identity ) =< 0 >y o), valid for all ), has been used. The term proportional
to Y affects only the global phase and can be neglected. Further, the two terms <
03 >y 03 and < Og, 1 >y O, 1 cancel each other to first order - this can be intuitively
understood from Fig.[3.1(b) and was confirmed by numerical simulations - producing
only a small (second order) precession of the instantaneous rotation axis. Hence we
obtain the following approximation for the evolution of the polarization vector:

0z =~ —iwBeff0pY (3.3)
with the effective birefringence
a
Beff:B—§<0-e >y (3.4)

depending on the intensity and the polarization state of the input light signal. Note
that Eq. preserves the square norm | Y |? reflecting that we did not take into ac-
count losses. Note further that when applying Eq. for linearly polarized input
light we obtain the same formula as in Ref. [9].

The solution of Eq. is straightforward, Y, = exp—iwBeft0gz)Yo, and corre-
sponds to a rotation of the input polarization vector around the linear birefringence
axis 0g, with a rotation angle 3 given by

B=w(B—5ms(0))2 (3.5)

mg(0) is the projection of the input polarization vector on the birefringence axis 0g, and
Z the distance from the input end.
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In principle, the NPR, caused by the nonlinear response of the single mode fiber
to the input state, could now be measured by varying the input power and observing
the corresponding change in the output polarization vector. However, from a practical
standpoint, this will be hardly possible as Eq. shows that slightest changes in the
linear birefringence B will completely cover the nonlinear, intensity dependent ones
(remember that B>> o for reasonable input power levels). Indeed, earlier work [13,25]
greatly suffered from temperature and pressure induced changes of B always present
in a lab environment, even though they were using short fibers.

Nowadays, a simple and efficient way to get rid of any kind of fluctuations in the
intrinsic birefringence is to make a double pass of the fiber under test by means of a
Faraday mirror [14,15] (FM). The linear birefringence accumulated during the forward
path is then automatically compensated on the return path. However, it is not a priori
clear what will happen to the nonlinear birefringence.

To investigate this point, we rewrite the solution of Eq. (3.3)) in the Stokes formalism,

m(L) = Re(B(L))m(0) (3.6)
where m(0) is the input Stokes vector, Rpg is a rotation operator around the axis 0g, and
B is as given by Eq. . Applying the action of the FM, mF (L) = —m(L) (the suffix F
indicates the state of polarization after reflection from the FM), and of the return path,

A

Rgl, we get

mF(2L) Rg Mool (B — Smf (L))]Re[wL (B — $mg(0))]m(0) =

A (3.7)
—Rp[0aLmg(0)]m(0).

The result shows that the rotation due to the nonlinear birefringence of the forward
and return path do not cancel out but add, giving twice the angle compared to a single
(forward) trip through the fiber (Eq. (3.5)). This is because the rotation direction of the
nonlinear birefringence is different for the upper and lower hemisphere of the Poincare
sphere (see Fig.[3.1(b)) contrary to birefringence in linear optics. Therefore, after reflec-
tion at the FM, which transforms the polarization state to its orthogonal counterpart
(i.e. flipping it to the other hemisphere), the sense of rotation of the NPR during the
return path will be the same as the forward path and the effects add up.
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Figure 3.2: Experimental setup of the NPR measurement. DFB distributed feedback laser, EDFA
Erbium doped fiber amplifier, PC polarization controller, FUT fiber under test, FM Faraday mirror, PBS
polarizing beam splitter

3.1.3 Experimental
Set-up

The experimental setup used to measure the NPR is shown in Fig. The light source
is a distributed feedback laser diode (DFB) operated in pulsed mode at a wavelength
of 1559 nm, consecutively amplified by an EDFA (small signal gain 40dB, saturated
output power 23dBm). Typically, pulses with a duration of 30 ns, a repetition rate of 1
kHz, and a peak power of up to 6 W were used. The light is then launched into the test
fiber via a 90/10 coupler and a polarization controller. The coupler was inserted for
the detection of the backward traveling light after the double pass of the test fiber, with
its 90 output port connected to the source in order to maintain the high launch powers
into the test fiber. The polarization controller, PC1, allowed to adjust the polarization
of the light launched into the test fiber, which is important for the strength of the NPR
as demonstrated by Eq. (3.5). In order to satisfy the assumption of neglectable polar-
ization mode coupling used in the previous section, a highly birefringent, polarization

maintaining (PM) fiber was used as the test fiber. Its linear birefringence B is of the



Chapter 3 Nonlinear Polarization Rotation and Optical Switching in Optical Fibers. 438

order of 5 ps/m, corresponding to a beat length in the mm range. The fiber length was
200 m, giving a total of 400 m round-trip length of the light reflected by the FM.

The polarization state of the light after the double pass of the test fiber was exam-
ined by an analyzer consisting of a polarization controller PC2 and a polarizing beam
splitter (PBS). To achieve a good sensitivity of the analyzer, it was calibrated to give a
50/50 output of the PBS for low power signals where no nonlinear polarization rota-
tion occurs. Finally, the two PBS output channels were monitored by a fast photodiode
(200 ps response time) and a sampling scope.

The measurements were then performed in the following way: for a given launch
power, the polarization controller PC1 was adjusted to give the smallest possible out-
put power at the monitored PBS channel. Consequently, the difference between the
two PBS output channels is maximized, corresponding to a maximum value of the
NPR.

Results

The experimental results are shown in figures 3.3|and

In Fig. the minimum output power (squares) of the monitored PBS channel is
given as a function of the peak power in the test fiber. Note that the reported output
power was normalized to account for the analyzer losses and corrected for the PBS
extinction ratio. Consequently, without any NPR, the reported output power would
equal half of the power in the test fiber (solid line). As can be seen in Fig. the
effect of NPR is negligibly small up to about 0.5 W. For higher launch powers, NPR
manifests itself by a reduction of the power in the monitored PBS channel. In fact, its
action becomes so strong that for launch powers above about 2.5 W, the output power
starts actually to decrease in spite of the linear increase that would be experienced in
the absence of NPR. In principle, this power drop should continue until the nonlinear
rotation of the input polarization is such that all the power is in the other PBS chan-
nel. However, as Fig. 3.3| shows, this is not happening. The observed increase in the
minimum output power could be related to modulation instability a phenomenon in
which a CW signal becomes amplitude and phase modulated as a result of the inter-
play between the nonlinearity and the dispersion of the medium (this effect manifest
itself with the appearance of two sidebands one shifted up in frequency and the other
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Figure 3.3: Minimum output power of PBS channel 1 as a function of the launched power for a 200 m
long PM fiber. Squares: measured data, solid curve: prediction from our model, straight line: prediction
in the absence of NPR. The deviations of the experimental data from the predicted values at high powers
are due to modulation instability not included in the model.

shifted down by the same amount): above 4.5 W launch power, a Stokes and Anti-
Stokes sideband shifted by 2 nm with respect to the laser peak appeared. These side-
bands are generated in a distributed fashion along the test fiber, which means that the
compensation of the linear fiber birefringence is failing. Therefore, and due to the large
birefringence B of the PM fiber used, the sidebands will be almost randomly polarized
at the output. As a consequence, about half of the power transferred to the sidebands
will appear in the monitored PBS output channel leading to the observed increase in
power.

Further, the measured results were compared to the ones predicted by Eq.
taking into account the analyzer calibration and the adjustment of PC1 as used in the
experiment. The parameters used in the computation were the ones from the experi-
ment, i.e. a fiber length of L=200 m, and a nonlinear coefficient of np =3.4-1029m?2/W.
The effective core area of Agff = 41 umz was chosen to give a good match with the
experimental results as we had no exact value from the manufacturer. mg(0), the pro-
jection of the input state of polarization on the birefringent axis, was varied in order to
give a minimum output power from the PBS channel, exactly like in the experiment.

The solid line in Fig. [3.3|shows these computed results. The figure clearly illustrates
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Figure 3.4: Minimum output power of PBS channel 1 as a function of the launched power for a 100 m
long PM fiber. Squares: measured data, solid curve: prediction from our model, straight line: prediction
in the absence of NPR.

that the measured data corresponds very well to the computed one. This validates our
measurement method of NPR in optical fibers and demonstrates that the linear bire-
fringence and its detrimental fluctuations are successfully removed by the FM. Above
an input power of 4.5 W, the curves deviate as expected from the onset of MI that was
not included in the analytical model.

Fig. 3.4/ shows experimental and computed results for a fiber length of 100 m. Note
that to avoid cutting our 200 m piece, we emulated the 100 m fiber length by intro-
ducing a 20dB attenuation for the reflected light. Consequently, the light power on
the return trip is too low to induce NPR, and serves only to compensate for the linear
birefringence of the forward trip. As the figure demonstrates, NPR is indeed reduced
by a factor of 2 compared to the measurements without attenuator, as expected from
Eq. (3.7). Twice the launch power is required to compensate for the shortened length to
get the same amount of NPR. Again, experimental and computed data are in excellent
agreement.

The experimental results of this section clearly demonstrate that one can indeed
use a FM to remove the overall linear birefringence, which allows to observe smallest
nonlinear effects otherwise hidden within the noisy linear birefringence. Note that
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the change in the output polarization due to environmental perturbations is especially
pronounced in PM fibers (when the input is not aligned with one of the two fiber axes)
due to its short beat length in the mm range. For example when not using a FM, the
output polarization changed drastically from just the body heat when approaching the

PM fiber spool, inhibiting any meaningful measurement.

3.1.4 Conclusion

Starting from the non-linear Schrédinger equations, an analytical solution for the evo-
lution of the state of polarization in a high birefringence optical fiber has been devel-
oped. It allows for a simple and straightforward modeling of go and return paths as
e.g. in interferometers with standard or Faraday mirrors. Using this model, we showed
that it is possible to remove the overall linear birefringence in a double-pass arrange-
ment with a FM while leaving at the same time the nonlinear birefringence, resulting
in NPR, unchanged. Only this allowed to measure the NPR in a long PM fiber at tele-
com wavelength in a lab environment where it is otherwise hidden by the changes in
the output polarization caused by temperature and pressure fluctuations.

The experimental results for the NPR obtained with a 200 m long PM fiber at a
wavelength of 1.55 pm were in excellent agreement with the theoretical predictions
from our model for launch power up to 4.5 W. Above that value deviations due to
modulation instability, not included in our model, were present.

Due to its generality, the presented method of removing the linear birefringence
while leaving the nonlinear one unchanged might prove to be a very valuable tool in
numerous other applications as well, like e.g. optical multi-/demultiplexers.

Note that in the case of non-PM fibers, where the coupling between the polariza-
tion modes is not negligible, NPR is reduced due to a scrambling related to the ratio
between the coupling length and the fiber length. In fact, this effect can be exploited to
get information about the important coupling length parameter in standard fibers, as

will be shown in Section 3.3
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3.2 All Optical Switching in a PM Fiber and SMF Fiber

In this section we demonstrate all-optical switching at 1.5 pm based on induced non-
linear polarization rotation, in both a polarization maintaining and a standard telecom
fiber. We have obtained an excellent switching stability in both cases by removing any
detrimental temperature or pressure induced changes of the output polarization state

with a Faraday mirror stabilization scheme.

3.2.1 Introduction

Considering the high bit rates of future optical fiber communication systems, optical
signal processing could soon become a necessity. In order to demux a single chan-
nel from a 100 Gb/s time division multiplexed (TDM) signal e.g., a switching time of
less then 5 ps will be required. All-optical switching techniques based on the optical
Kerr effect [8] [19) 20, 21, 22, 23] are very attractive in that respect due to the ultra-
fast Kerr response [24 25, 26] of less than a few fs. Indeed, an all optical Kerr switch
was demonstrated recently that read out a 10 Gb/s channel from a 40 Gb/s TDM sig-
nal [6]. Besides the standard switch parameters like switching ratio, insertion loss or
switching time, the stability of the switch is an important issue. Variations in the input
control or signal polarizations as well as changes of the intrinsic birefringence of the
Kerr medium will affect the switch. Variations of the input signal polarization can be
dealt with by adopting a polarization diversity scheme, like e.g. in Ref. [6]. In order to
keep the switch stable internally, the control pulse polarization should be kept as stable
as possible by using a proper set-up. Moreover, changes in the signal polarization in
the Kerr medium (typically a polarization maintaining PM fiber) due to changes in the
intrinsic fiber birefringence have to be avoided since they can greatly reduce the ex-
tinction ratio of the switch. An active correction scheme (e.g. a polarization controller
[12] with a feedback loop) is typically not rapid enough to correct the fast, acoustical
perturbations, and may not work at all for large changes due to its limited range of
operation.

To avoid these problems, we use on one hand a non-interferometric switc and on
the other hand a passive stabilization scheme. In interferometric switches like Sagnac
loops or Mach-Zehnder interferometers (IF), the switching is based on a phase-shift

1“Non-interferometric” in the sense that the signals being interfered are not from two physically sep-
arate arms. Of course linear optics is always interferometric in a strict sense of the word (superposition
principle).



Chapter 3 Nonlinear Polarization Rotation and Optical Switching in Optical Fibers. 53

induced between the two different propagation directions or arms, respectively. If the
signal is not carefully launched into an axis of a PM fiber, it will split into 4 different
polarization modes, two in each propagation direction or interferometer arm, respec-
tively. In addition to the phase-shift between the two different propagation directions
or interferometer arms, additional local” phase-shifts between the polarization modes
with the same propagation direction (or within the same IF arm) will degrade the
switch quality. In the switch presented here, this problem is avoided by uniquely us-
ing this "local” phase-shift between the two signal polarization modes in a single fiber,
thereby reducing the relevant mode number to two. Having two modes only, we can
then use a passive stabilization scheme that works both for fast and slow, arbitrarily
large changes in the fiber birefringence. Although in this work an optical fiber is used
to induce a nonlinear phase-shift, it should be noted that the stabilization scheme holds
as well for any other Kerr elements (e.g. semiconductor saturable absorbers SOA).

3.2.2 Principle of operation

As mentioned above, the principle of the optical Kerr switch presented here is based
on an induced phase-shift between the two signal polarization modes in a single fiber.
It is induced by powerful control signal pulses that lead to a different phase-shift (via
the optical Kerr effect) for signal components with the same and orthogonal polar-
ization, respectively. The corresponding change in the output signal polarization is
maximized if the control signal polarization matches the polarization of one of the two
signal polarization modes during the entire propagation in the Kerr fiber. By inserting
a polarizing beam splitter (PBS), the signal is switched between the two PBS output
ports depending on the amount of the induced phase-shift.

For a control pulse linearly polarized along one of the birefringent axis of a PM
fiber, it is easy to show that the phase shift A acquired by a signal linearly polarized
at 45 degree is [2] o

Ap= §T[(

Left P
Np——
A ) Actt

where ny is the nonlinear refractive index of the fiber, A is the signal wavelength, Aef¢

(3.8)

is the effective area of the fiber and P is the peak pump power. Fiber losses are included
in the effective length Letf=1/a[l-exp(-a L)] where L is the length and a the fiber loss
coefficient. For a PBS adjusted so that all the signal is at output port 2 when the control
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pulse is absent, the signal at output port 1 becomes
T= sinz%‘p . (3.9)

where the induced phase shift A@is given by Eq. (3.8). A different wavelength is conve-
niently used for the control pulses so that they can be combined with the signal using
a wavelength division multiplexer (WDM). As a consequence, a walk-off between the
control pulses and the signal is introduced, ultimately limiting the switching time. A
large walk-off also enlarges the required control peak power because of a reduced in-
teraction length (i.e. smaller Let in Eq. ). To keep the switch fast and efficient,
either a fiber with low group dispersion has to be used, or the wavelength separa-
tion should be kept as small as possible. The latter leads to a trade-off between the
switching time (determined by the walk-off) and the extinction ratio (determined by
the WDM filtering). For a detailed analysis, the reader is referred to Ref. [20].

It is very important to notice that the transmission given in Eq. holds only for
a fixed intrinsic birefringence of the fiber. Any fluctuation of this birefringence, caused
e.g. by temperature drifts or pressure changes, leads to an additional phase-shift ran-
domly changing the bias of the switch. In order to reduce this effect detrimental for
the switch stability, different methods have been proposed [12, 20]. A very promis-
ing solution is to make a double pass of the fiber by means of a Faraday mirror (FM)
[14, 15,16, 18]. The FM transforms any input polarization state to the orthogonal one
upon reflection. Consequently, the signal components that were polarized parallel to
the fast axis during the forward propagation will be polarized parallel to the slow axis
during the return path and vice versa. The overall acquired phase is therefore the same
for any input polarization, and the intrinsic birefringence is automatically removed as
long as it is stable during a single round-trip path. In this way, fluctuations with fre-
quencies up to about 0.5 MHz (200 m long fiber) can be removed.

Although the application of a FM is widely spread in linear optics, we believe to
be the first ones having demonstrated its usefulness for nonlinear optics as well. Espe-
cially, we showed in Ref. [23] both theoretically and experimentally that only the linear
phase fluctuations are removed, whereas the purposefully induced nonlinear effects of
the go and return-path add up. This allowed to measure the nonlinear polarization

rotation in an optical fiber.
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3.2.3 Set-up

The setup of the Kerr switch using the described stabilization scheme is shown in
Fig. The control signal was generated by a directly modulated DFB laser diode
with a wavelength of 1559 nm, amplified by an EDFA with a small signal gain of 40 dB
and a saturated output power of 23 dBm. The pulses from the DFB laser had a dura-
tion of 28 ns with a repetition rate of 1 kHz. This is good enough to demonstrate the
usefulness of the stabilization scheme and the basic functioning of the switch - in an
application, shorter control pulses at a higher repetition rate could be used. In order
to have a larger side-mode suppression of the DFB output at the signal wavelength,
an external small band pass filter (“notch” filter) was inserted after the EDFA. Using a
WDM, the control pulses were then coupled into the Kerr fiber along with the signal
consisting of cw light generated by a second DFB at 1556 nm. The signal power in
the Kerr fiber was -1.8 dBm, whereas several Watts of control pulse peak power were
available. For the Kerr medium, we first used a PM fiber with a length L of 200 m. The
wavelength difference AA of 3 nm between control and signal light consequently leads
to a walk-off of about 10 ps (assuming a GVD value of D = 17 ps/km nm):

At ~ DLAN ~ 10ps

This value represents a lower limit for the (0-100)% rise/fall time of the switch. For
even shorter switch times, a dispersion shifted fiber (DSF) would have to be used. For
the initial adjustment of the switch, the polarization of both control pulses and signal
could be set independently by polarization controller PC1 and PC2, respectively. This
allows both for the pump to be launched into a birefringent axis of the PM fiber and
for the signal polarization to be set at 45 deg to this axis for a maximum switching ratio
at the output. At the end of the PM fiber the pump was removed with a second WDM,
whereas the signal was reflected back with a Faraday mirror. Note that the control
pulse was removed by the second WDM and not by the first one -after a double pass
of the FUT- because one filtering was not enough to remove the control and the signal
at the line and switch ports would have been covered by the residual control. After
this double pass, the reflected signal is sorted out by a circulator and put on a PBS.
The switch is biased by another polarization controller PC3, which allows to set the
desired ratio of the signal light at the two PBS output ports. Typically, it was adjusted

for maximum power in port 1 (line port), i.e. minimum power in port 2 (switch port)
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Figure 3.5: Experimental setup. DFB distributed feedback laser, EDFA Erbium doped fiber amplifier,
PC polarization controller, FM Faraday mirror, PBS polarizing beam splitter, WDM wavelength division
multiplexer



Chapter 3 Nonlinear Polarization Rotation and Optical Switching in Optical Fibers. 57

in the absence of control pulses. The switch port, for which Eq. holds, was then
monitored using a fast photodiode with a response time of 200 ps. The extinction ratio
of the switch mainly depends on the extinction ratio of the PBS (20 dB in our case) and
on the control signal power suppression at the signal wavelength (60 dB in our set-up).
If necessary, higher values could be obtained by using additional polarization selection
or filtering. Note that the required control signal peak power (or fiber length) could in
principle be reduced to half its value if the pump is not removed at the FM, thereby
allowing a double pass of the Kerr fiber. The switch performance is still independent
of the control pulse pattern in that case as long as the total power of the control signal
within half the round-trip time (1 ps in our case) doesn’t change too much, a situation
typically realized when switching high bit rate signals.

3.2.4 Experimental results

PM fiber

The experimental results using a 200 m PM fiber as the Kerr medium are shown in
Fig.[3.6|and Fig.

The proper working of our stabilization scheme was checked by monitoring the
output power at the switch port for several hours. After the initial setting of the switch,
it was left alone without any re-adjustments for a time period of several hours, while
a normal activity in the lab was maintained, with people working around the table.
Moreover, a change in the temperature of 5 degrees was observed during that time
span. The measured fluctuations of the switch port signal power are shown in Fig.
Besides the measured data points (squares), the mean value (bold line) and the stan-
dard deviation o (thin lines) are shown. As is demonstrated by the figure, the obtained
switch stability was rather good (less than 2% fluctuations) when using the Faraday
mirror. When it was replaced by a normal mirror on the other hand, thereby remov-
ing the stabilization, the switch port signal output power rapidly changed in the range
from zero to full switch power. Indeed, it is well known that the polarization of light
coupled into both the birefringent axes of a PM fiber - due to its short beatlength of
only a few mm - is very susceptible to any perturbation. The use of a stabilization
is therefore an absolute necessity. Fig. (3.7 gives the normalized switching ratio as a
function of the applied control signal peak power. The normalized switching ratio is
defined as the ratio of the actually measured power from the switch port, divided by
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Figure 3.6: Switch performance using a 200 m PM fiber. Relative fluctuations of the switch port signal
power as a function of time. Measured data (squares), mean value (bold line), and standard deviation o
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Figure 3.7: Switch performance using a 200 m PM fiber. Normalized switching ratio as a function of

the control signal power. Measured data (squares), theoretical fit (solid line).
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the maximum signal power obtainable from that same port (measured by adjusting
PC3 for maximum transmission to the switch port in the absence of control pulses).
The experimentally obtained values (squares) are compared with a fit (solid line) us-
ing Eq. and requiring a peak normalized switching ratio of 1. As the figure shows,
the experimental data corresponds well with the model (statistical X% = 0.8). The max-
imum switching ratio we could obtain in the measurement was however only 65% for
a control peak power of 1.7 W. For higher control powers, the signal started to exhibit
strong power fluctuations within the temporal switch window of 28 ns, which inhib-
ited a proper functioning of the switch. As revealed by the optical spectrum, these
fluctuations were caused by the onset of concurring nonlinear effects normally absent
until much higher peak power times distance values. We believe that our non-optimal
control signal source (side-band suppression) was seeding the observed nonlineari-
ties, leading to a much lower threshold power. The observed limit in the switch ratio is
therefore not a general problem of the demonstrated switch technique, but was unique

to our experimental set-up.

Standard fiber

Further, we analyzed the possibility to use a standard (i.e. non PM) fiber for the Kerr
medium. Besides reducing the switch cost, the assembly of the switch is much eas-
ier using standard than PM fiber, and the insertion loss can be reduced as the splice
losses are lower. In order for the switch to work properly and efficiently, the part of
the signal having the same polarization as the control signal at the input should keep
the same polarization as the control during propagation, whereas the orthogonal part
should stay orthogonally polarized. Only in this way an important phase shift between
these two signal components can build-up. It is obvious that the above requirement is
perfectly fulfilled in a PM fiber, where a signal component that is coupled into one
of the two fiber axes remains there during propagation. In a standard fiber however,
the situation is different. The above requirement, which corresponds, on the Poincare
sphere, to a conservation of the angle between the control and signal Stokes vectors
during propagation, is no longer met exactly. This is because the polarization mode
coupling (specified by the coupling length /1 [28]) present in the standard fiber leads
to a coupling of the control and signal light into both the (local) fiber axes, where they

will evolve differently due to their different beatlengths. The conservation of the angle



Chapter 3 Nonlinear Polarization Rotation and Optical Switching in Optical Fibers. 60

between the control and signal Stokes vectors consequently depends on the fiber char-
acteristics (coupling length /1, beatlength Lp) and on the wavelength difference between
the control and signal light. We therefore first verified that this angle conservation was
sufficiently good in the standard fiber to be used as the Kerr medium. As a simple

estimate, we can use

a = 21 (1/Lp(Asignal) — 1/Lo(Acontrol))

where Lp(A) =A/(cB) and the birefringence B [ps/m] is assumed to be independent of
the wavelength. The estimate represents a worst case scenario as the coupling length h
is assumed to be much larger than the fiber length L and that both signal and control
pulses were coupled into both fiber axes at the input. Using the wavelength difference
of 3 nm of our experiment, and a typical value of the signal beatlength of 10 m, we
get an angle difference of just 7 deg after 100 m of fiber, which should not cause any
problems. Analysis of the Jones transfer matrix measured at both the signal and control
wavelength further suggests that the angle should be sufficiently conserved. However,
these simple estimates neglect nonlinear polarization evolution like e.g. a self-rotation
of the intense control signal [23]. The testing of the switch was performed in a similar
way as described in the previous subsection. However, as there is no well defined axis
into which to couple, the input states of polarization were varied until a maximum in
the switching ratio was found, although the differences were not that large due to an
apparently small coupling length & of the employed Kerr fiber. This small coupling
length quickly leads to a randomization of the fiber axes and makes the results almost
independent from the input polarization of the control signal. On the other hand, the
effective phase shift acquired by the signal is reduced by this randomization, and we
had to use a longer Kerr fiber of 680 m to obtain a sufficiently large rotation of the
signal at the fiber output.

As can be seen in Fig. (3.8 the stability was once more excellent when employing the
FM. Fig.3.9]shows the observed switching ratio as a function of the control peak power.
The obtained switching ratio corresponds to 90% (for control pulses with a peak power
of 2.4 W) before other concurring nonlinear effects once more lead to a pulse break-up.
The experimental data are not too different from the ones for the PM fiber (Fig.[3.7),
i.e. the longer length of the standard fiber (AL= +480 m compared to the PM fiber
used before) accounts well for the phase-shift reduction caused by the “polarization
scrambling” and the different value of the ratio np/Ae¢t. The use of a standard fiber is
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Figure 3.9: Switch performance using a 680 m standard fiber. Normalized switching ratio as a function
of the control signal power.
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therefore also interesting from a physical point of view, as the functioning of the switch
could be exploited to reveal information about the coupling length of the standard fiber

as will be seen in the next section.

3.2.5 Conclusion

In this section we have successfully demonstrated all-optical switching at 1.5 pm based
on induced nonlinear polarization rotation in both a polarization maintaining and a
standard telecom fiber. The insertion of a Faraday mirror after the Kerr fiber led to a
very good stability of the switch for both cases.

In the standard fiber, switching was made possible because the small difference be-
tween the control and signal wavelength allowed for a similar evolution of both signals
along the fiber - the two corresponding Jones transfer matrices were found to be almost
equal - thereby well preserving the angle between the two respective Stokes vectors.
As a byproduct, the ratio np/ Aeff can be determined, and using an appropriate model,

information about the coupling length i might be extracted as well.
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3.3 Determination of the coupling length

In this section we present a way to obtain the polarization coupling length, an impor-
tant parameter for the PMD probability distribution. This parameter is obtained from
measurements and modeling of the nonlinear polarization rotation in optical fibers.

Results for different types of fibers are presented

3.3.1 Introduction

It is well known that single-mode communication fibers are birefringent and that the
orientation and the amount of birefringence are randomly distributed along the fibers.
The corresponding polarization mode dispersion (PMD) becomes therefore a statistical
quantity, and not only its mean value but also its probability distribution is important
to assess the inferred system impairments. This distribution depends on two param-
eters: the (mean) local birefringence B and the polarization coupling length h, which
is the distance over which the E field looses memory of its initial projection over the
local polarization eigenstates [27]. In fibers having a length L long compared to h, the
probability distribution is Maxwellian with a mean PMD value of B, whereas for cou-
pling lengths approaching the fiber lengths, the PMD statistic can change considerably
[28]]. It is therefore important to have knowledge not only of the overall PMD but also
of h and the beatlength L. In this section we present a novel way to directly infer the
polarization coupling length from measurements of the nonlinear polarization rotation
(NPR) in a fiber.

3.3.2 Principle of operation

In a dielectric medium, an intense elliptical input pulse induces birefringence - via the
optical Kerr effect - due to the different amounts of intensity along the major and minor
axis of the polarization ellipse. In an isotropic medium this self-induced birefringence
leads to polarization ellipse self-rotation. In an optical fiber however, the situation is
more complex due to the presence of the local intrinsic birefringence. The polarization
changes are hard to predict in that case as the linear and nonlinear birefringences inter-
act in a complicated manner. In general, the linear birefringence will however be much

larger than the induced nonlinear one, and the evolution of the polarization vector y
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in a polarization maintaining fiber can then be approximated by [23]:

O ~ 1Ber 00l = (B~ 5 mb(0)) 00l (3.10)

where 0g accounts for a linear birefringence with axis 0, a =npP/(3cAetf), ny is the
nonlinear Kerr coefficient, P the power, and Aet+ the effective area. mg(z) is defined as
the projection of the SOP on the birefringent axis at the position z along the fiber. The
term Bet takes into account for the linear birefringence B and the nonlinear birefrin-
gence. The solution for Eq. is straightforward, and corresponds to a rotation of
the input polarization vector around the linear birefringence axis 0g, with a rotation
angle 3 given by B=wBe¢z. In principle the NPR can now be measured by varying the
input power P and observing the corresponding change in the output SOP. However,
an inherent problem for this kind of measurements is the instability of the output SOP
at the exit of the fiber. Due to temperature changes and drafts in the fiber environment
the dominant linear birefringence B strongly fluctuates and completely covers the non-
linear induced change. We have recently proposed a method for measuring NPR [23]
by removing the overall linear birefringence -and therefore also its fluctuations- in a
purely passive way by employing a Faraday mirror (FM) and a double pass of the
fiber under test. Doing so, the nonlinear birefringence (leading to NPR) was shown to
remain unaffected, i.e. the NPR of the forward and backward paths add up (see section
B.1). This allows to measure NPR both in polarization maintaining (PM) fibers and in
standard fibers. However, the random variations of the intrinsic local birefringence
axis in a standard fiber reduce the NPR. This reduction is due to the increased proba-
bility that the NPR action along each fiber’s piece where the birefringence is constant,
is compensated for by another. The situation becomes more complex, and we therefore
resort to numerical simulations. The fiber is modeled as a concatenation of linearly
birefringent trunks -for which Eq. holds - with a constant physical length Lc.
The amount of birefringence of these trunks is fixed (i.e. equal in all trunks), whereas
its orientation is driven by a white noise process gg(z) characterized by a dispersion
own [27]. For each single trunk, Eq. is used to calculate the output SOP from the
input one, which is calculated from the output SOP of the previous trunk according to
the relative axis orientations. The SOP is therefore calculated piece by piece, with the
projection mq being different for each new trunk. The final SOP will depend on the
choice of the birefringence axis orientations of the trunks, with variations being larger
in the limit of Lc — L. We therefore made 200 runs for each specific trunk length to get
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a mean value of the NPR.

3.3.3 Experiment

The experimental setup for the measurement of NPR for different test fibers is shown
in Fig. The light source consists of a distributed feedback laser (DFB) operated in
pulsed mode at a wavelength of 1559 nm. Typically, pulses with a duration of 30 ns,
a repetition rate of 1 kHz, and a peak power of up to 6 W (after amplification by an
EDFA) are used. The light is then launched into the fiber under test (FUT) via a 90/10
coupler and a polarization controller (PC1). The coupler is inserted for the detection
of the backward traveling light after the double pass of the FUT, with its 90% output
port connected to the source in order to maintain high launch powers into the FUT.
The polarization controller, PC1, allows to adjust the polarization of the light launched
into the FUT, i.e. mg which is important for the strength of the NPR as demonstrated
by Eq. (3.10). Note that for low launch powers (negligible NPR), the action of PC1
is removed by the Faraday mirror, and its setting is therefore of no importance in that
case. The output SOP is examined by an analyzer consisting of a polarization controller
PC2 and a polarizing beam splitter (PBS). To achieve a good sensitivity of the analyzer,
it is calibrated for equal power in the two PBS output arms for low power launch
signals where no NPR occurs. The two PBS output channels were monitored by a fast
photodiode (200 ps response time) and a sampling scope. The measurements were then
performed in the following way: for a given launch power, the polarization launched
into the FUT was adjusted (PC1) to give the smallest possible output power at the
monitored PBS channel. Consequently, the difference between the two PBS output
channels is maximized, corresponding to a maximum value of the NPR.

3.3.4 Results and discussion

We first measured the NPR in a PM fiber with a length of 200 m. The results shown
in|3.1{indicate that the NPR manifests itself with a reduction of the power in the mon-
itored PBS channel. The output power starts to decrease in spite of the linear increase
that would be experienced in the absence of NPR. The measured data agree well with
our model, in which mg(0) was varied in order to give a minimum output power from

the PBS channel like in the experiment, and only one fiber trunk was used (Lc = fiber
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Figure 3.10: Minimum output power of PBS channel 1 as a function of the launched power. Symbols
refer to the measured data fiber A (open circles), B (full circles), and C (full squares). Solid curve:
prediction from our model. Straight bold line: prediction in the absence of any NPR. Bold curve: PM
fiber. In the inset are shown the values of the calculated h for different owy and Lc combinations giving
curves that fits the experimental data

length L). The model curve for the PM fiber is shown in Fig. (bold curve). Mea-
surements were then made on different standard single mode fibers (SMF). The fiber
lengths were typically 1 km (simulations were adjusted accordingly to each fiber length
and np/Aett coefficient). Fig. shows the results for 3 different SMF; fiber A and B
with a PMD of .05 ps/km (open and full circles) and fiber C with a PMD of 1.9 ps/+v/km
(full squares). The three standard fibers clearly exhibit a different amount of NPR with
the fiber C showing a NPR similar to a PM fiber (bold curve). In order to fit the exper-
imental data we have to introduce the polarization coupling length h.

The coupling length is defined as the length at which the fiber autocorrelation func-
tion <cos[B(z) -6(0)]> is equal to 1/e. For the discrete case (as in our simulations) in
which each piece of fiber has a fixed length Lc, it's easy to show that h = 2L.c/03,y
The fitting of the experimental data could then be made with two different free pa-
rameters; the length Lc and the dispersion own of the white noise process, providing
h will remain constant. This is shown to be the case for our data as shown in the in-
set of Fig. Here L is varied between 5 and 200 m and 67,y between 10 and 70
degrees. The simulations show that for the three different fibers the coupling length
can be estimated to be about 160 m for the fiber A and 300 m for the large PMD fiber
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(tiber B). A value of h<100 m is quite reasonable for a state-of-the-art, low PMD fiber.
The coupling length of the SMF with high PMD (fiber C), found to e about 1000 m, is
surprisingly quite large, indicating that there might be well defined birefringent axes
in that fiber.

3.3.5 Conclusion

In this section we presented measurements and a model of NPR in an optical fiber, al-
lowing for direct determination of the polarization mode coupling length. Polarization
coupling length values as low as 160 m in state-of-the-art low PMD fibers were found.
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Chapter 4
Four Wave Mixing in Optical Fibers.

4.1 Photon Pair Generation in Optical Fibers

Pairs of correlated photons entangled in energy and time can be used as a resource
for quantum information processing. Up to now, photon pairs are mainly created in
non-linear crystals or waveguides, using parametric down conversion, a non linear
effect due to the second order susceptibility (x?). Here instead, we propose to create
photon pairs directly in optical fibres, exploiting four wave mixing processes due to
the third order susceptibility (x3). The advantage of creating photon pairs directly in
optical fibres is that we can avoid the losses due to the collection of pairs created in an
external source into the fibre. It also allows an all fibre operation, which is much more
practical for “real life” applications (e.g metrology)

41.1 Introduction

The response of a dielectric to the light becomes nonlinear for intense electromagnetic
fields. The origin of the phenomena is related to the anharmonic motion of the bound
electrons in response to an applied field. As a result the induced polarization is not

linear in the electric field E but instead
P—¢ (X<O>E+x<1>EE+x<2>EEE) 4.1)

where € is the vacuum permittivity and X)) the j-th order susceptibility. Silica (SiO7)
is a center-symmetric molecule and symmetry considerations will lead to the result
that the second order susceptibility is equal in electric dipole approximation to zero.

The consequence is that for example no second harmonic generation is possible in an

69
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optical fiber (in fact this is not true due to the higher order terms neglected in first
approximation). The third order term is responsible instead for FWM, third harmonic
generation, nonlinear refraction. This E dependence of the polarizability reflects on a
power dependence of the refractive index of the fiber, inducing a possible intermodu-
lation between different optical signals. If two different signals with frequencies v1,v»
are then launched into the fiber, the beatnote of these two signals modulates the re-
fractive index with a frequency (v2-v1). Through this modulation a third signal at the
frequency v1 will develop sidebands at the frequencies v1 + (V1 —V2) and v1 — (V1 —V2).
The situation in fact is much more complex and every possible combination of the sin-
gle frequencies can combine with each other. In a quantum representation we can say
that different photons annihilate to generate new ones at different wavelengths. Dif-
ferent kinds of FWM are possible. The case in which three photons annihilate to give
rise to a new one, is called “totally degenerate” FWM; the case of two photons with
the same energy that combines to give rise to two photons different in energy, is called
“partially degenerate” FWM. “Non-degenerate” FWM is present when all the frequen-
cies are different to each other. It is important to note that as mentioned above not only
energy conservation has to be satisfied in the FWM process, but even phase matching
conditions. For this reason FWM is referred to as a “parametric process”.

In this chapter we will concentrate mainly on “partially degenerate” FWM. In this
process two pump’s photons are absorbed by the fiber and two photons are created;
one photon at a higher frequency than the pump and one at a lower frequency. Usually
low frequency waves are referred as Stokes waves. High frequency wave as Anti-
Stokes. As mentioned in the former paragraph, parametric processes are stronger
when the process is phase-matched, i.e. when momentum conservation is valid. It
follows that due to the dispersion of the refractive index, FWM is not always present
but only when the following relation holds:

_ 2MpWp  NsWs , NasWas _
C C C

Ak

0; (4.2)

where the w's refer to the frequencies of the waves (pump, Stokes and Anti-Stokes)
and the n’s to the different values at each wavelength of the effective refractive index.
For the case of an optical fiber, the effective refractive index of the different waves (and
consequently AK) is determined by three factors.

Ak = Aky + Ak + Ak L (4.3)
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The first term Aky is the dispersion of the bulk medium of which the guide is made.
The second is due to the dispersive characteristic of the waveguide itself. The third one
represents the mismatch due to nonlinear effects. The single terms can be written as

follows
Aky = (NsWs+ NasWas— 2Npwp)/C (4.4)
Ak = (Answs + ANaswas— 2ANpwp) /C (4.5)
Ak = 2Py (4.6)

where the new n’s are equal to the material refractive index n with added the change
due to waveguiding. We can immediately note that phase matching in SMF is possible
only if at least one of this term is negative. Some considerations are worth to be done.
As the pump wavelength changes from below Ag to beyond it, the phase mismatch
vector (the material one) changes sign from positive to negative. The phase matching
(total phase mismatch vector equal to zero) will so occur at longer pump wavelengths
because the waveguide contribution causes the shift of the zero crossing point. As
the core diameter increases the waveguide contribution changes sign from positive to
negative, making phase matching conditions dependent from the core size. Since for
a SMF both the material and the waveguide dispersions contribute to phase mismatch
the resultant phase matching point depends on

e the dopant

e the doping concentration

e the refractive index difference
e the core diameter of the fiber

Note now that the material contribution Aky can be expressed conveniently as a func-
tion of the frequency shift between the pump and the Stokes (or anti-Stokes) sideband
defined in the following way:

Q = 0p — Ws = Was— WP (4.7)

To do this we make a Taylor expansion of the propagation constant (momentum) about
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the carrier frequency wy

Be) = k() = ()£ = Bo-+ (- ) By + 5 (00— w02+ = (00— o) °Bat o (49)

.- (22

Now the dispersion parameter D is defined as

o_dB_d (dk) 2re d’k

= o \dw) = m2de (49)

Let substitute the last expression for the dispersion parameter D into the former equa-
tion. Moreover we are interested in the case such that Ag < Ap and two photons from
the pump generate one photon at the probe wavelength and another one at the Stokes
side (As > Ap) The phase mismatch Ak will result to be

Ak = kg + ks — 2kp

Substituting the values for k found before (i.e. the Taylor expansion around the pump
wavelength) and defining Q = (ws— wp) we got

2
_Mp

Ak =
2TIC

Q2D (Ap) (4.10)

Now making some calculations and considering that As=Ap+A and Ag = Ap — Z (it is
easy to show that Z ~ A) we can easily find that

So we can say that the material dispersion
Dk = B2Q?

where 32 is the GVD.
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The material dispersion can be rewritten in a more convenient way

My = 2 D@2
M one
Now note that this relation is true only when we are not too near the lambda zero
dispersion. In fact in this case the formula is no more valid and higher terms in the
expansion have to be considered (note that D is zero!). Another important considera-
tion is the following. If we act on the dispersion we can change the value and the sign
of the material dispersion, achieving phase matching. We can now consider what is
happening for the case of SMF (the one we are considering in this chapter). For this
tibers the waveguide dispersion is roughly zero and phase matching can consequently
be achieved in different ways. If the pump wavelenght is greater than the zero disper-
sion wavelength Ag the material dispersion becomes negative. So phase matching is
achieved when the pump wavelenght is near Ag. Phase matching can be obtained too,

acting on the nonlinear term through the power of the pump.

4.1.2 Phase matching condition near Ag

We saw in the precedent paragraph when phase matching conditions are allowed. We
can now distinguish two different situation depending if we are with the pump wave
in a region in which the dispersion D is equal to zero or instead if we are near that one.
Depending on that, the phase matching conditions change quite a lot and the FWM
gain too. Let consider first the case in which the pump is in a region in which the dis-
persion D is different from zero (but near that one). Moreover we suppose to work in
the normal region of the dispersion (D>0). In the anomalous region things are quite
different and the modulation instability plays an important role making impossible to
retrieve any information about the chromatic dispersion profile. So under the condi-
tion that the fiber has a normal dispersion, the conversion efficiency n which is defined
as the ratio of the converted power to the input signal power, is equal to

sin(gL)] 2

n:yPPL{ oL

with 1
0 = 5 K (BK-+ 4yF)]
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where Pp is the pump power, L is the length of the fiber under test, yis the nonlinear

factor equal to
ny 2m

Y= Reride
and Ap is the pump wavelength. Considering the equation we found before for the
phase mismatch Ak, t will follow that the conversion efficiency depends on the follow-

ing parameters

e the pump power
e the phase matching condition

e the nonlinear coefficient y

Things goes different when the dispersion is equal to zero, i.e. when the wavelength
of the pump is equal to Ag.For this case we have to consider higher order terms in
the expansion of the propagation constant, considering that the first derivative of the
dispersion parameter D is different from zero. With some calculations (see paragraph
before) it’s possible to show that the phase mismatch Ak is equal to [41]:

m*dD_Q?

2= (Ao —Ap) Q?

A==z N

4.1.3 Photon pair generation and experimental setup

The process we will exploit in order to produce photon pairs in optical fibers is partially
degenerated FWM. That means we use two photons at the pump wavelength to create
photons at two new frequencies ws (called Stokes photon; the reason is that this photon

is lower in energy with respect to the pump) and was
20p = B + Ws

There is no presence of a probe that will stimulate the process to create one photon at
that wavelength and the other at the Stokes or Anti-Stokes. So the FWM will still be
present of course, but distributed on the entire spectra. Even if there is some filtering
some amplified stimulated emission (ASE) will be present in the FUT stimulating the
FWM on the ASE region of the entire available spectrum. So two symmetric sidebands
around the pump wavelength should be present arising from the FWM process. The
setup for the experiment is shown in Fig.
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Light coming from a DFB laser working in CW mode, is filtered twice by way of
the fiber bragg gratings FBG1 and FBG2 tuned on the lasing wavelength in order to
remove any background signal from the laser itself. Light is then injected into the FUT
along which FWM photons are created. At the exit of the FUT the laser line is rejected
by the filters FBG3 and FBG4 (80 dB attenuation) because the generated signal is lower
than the laser line. After that the photons are splitted in a ration 50/50 at the coupler
and two tunable gratings TF (40 dB attenuation) are tuned symmetrically around the
laser line. Detection events are collected at the photodiode (InGaAs photodetectors;
see Section and coincidences between the events are made using a time to digital
converter.

The measurements were made in the following way. First of all intensity as a func-
tion of wavelength was determined at the exit of the FUT for different fibers. This
in order to see that the arising bands were symmetrically located and the signal was
higher than the noise. Different spectra are shown in Fig. |4.2|for fibers having different
Ao and different lengths. The spectra for a high non linear fiber (length 1 km) with Ag
at the same value of the laser line (A = 1549.4 nm) is shown in Fig. We can clearly
distinguish two sidebands located at higher and lower wavelengths compared to the
laser line. In the inset of Fig. 4.3|is shown the correlation on the detection of the pho-
tons at the two photodiodes. The two tunable gratings are tuned at higher and lower
wavelengths symmetrically around the laser line. The correlation spectra shown in the
inset was made at the wavelengths evidenced with the arrows in the figure. Correla-
tion measurements were made for different wavelengths and no correlation was ever
found suggesting that the bands have their origin in different phenomena than FWM.
Measurements as a function of length were made too and even for shorter lengths (me-

ters) no correlation was ever observed.

41.4 Conclusion

In conclusion no photon pairs were generated. This could be done to the low amount
of power injected into the FUT and to the poor quality of the DFB laser. At the same
time luminescence due to the glass impurities is covering the signal. Improvements
could be obtained with a Er ring laser (higher signal to noise ration and higher power)
and using short lengths of fibers (like photonic crystal fibers).



Chapter 4 Four Wave Mixing in Optical Fibers.

u.)

Intensity (a

10000 -

15|40 ' 15|50 ' 15|60
Wavelength (nm)

1554 nm
1400 nm
1300 nm

HNLF

1549 nm

77

Figure 4.2: Spectra of the created photons. The central peak is due to the pump laser. On the right is

indicated the value of Ag.



Chapter 4 Four Wave Mixing in Optical Fibers. 78

Time (ns)
20 40 60 80

2000

2500 +

2000 -

u.)

1500

1000 ~

Intensity (a

[

o

o
|

1520 1530 1540 1550 1560
Wavelength (nm)

Figure 4.3: Spectra of the created photons. The central peak is due to the pump laser. For these
photons,as seen in the inset of the figure, no time correlations have been observed, indicating that they
are probably created by another process than FWM (e.g. fluorescence in the fiber).

4.2 Distributed Measurements of CD in DSF fibers

In this section we report on distributed measurements of chromatic dispersion along
dispersion shifted fibers with different values of polarization mode dispersion and
coupling lenght, by way of an OTDR-like method based on four wave mixing.

421 Introduction

The implementation of Erbium-doped fiber amplifiers allows for high-bit rate trans-
mission over transoceanic distances. At the same time, the technique of wavelength
division multiplexing (WDM) is used to increase the transmission rate, leading to an
important amount of power inside the fiber. Because of the long distances and high
powers, optical nonlinearities start to play a significant role. In dispersion shifted fibers
(DSF) four wave mixing whose efficiency depends on the chromatic dispersion profile,
leads to transmission impairments. From here the necessity to have a technique that
can allow to map the longitudinal distribution of chromatic dispersion along a fiber.

The method proposed by Mollenauer et al.[29,30] and based on four wave mixing, is a
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convenient approach for the measurement of chromatic dispersion maps in DSF fibers.
In this work we show that when the coupling length h is relatively large (as is typically
the case for most older installed DSF cables) the method presents severe limits. We
present a comparison between DSF fiber with different values of PMD and coupling
length and a model is discussed in order to explain the observed phenomena.

4.2.2 Theory

The measurement method consists in launching two optical beams at frequencies wy
and wp (w1 < wyp) along a fiber. Due to the nonlinearity of the fiber, the two waves
will interact by way of FWM generating two new signals (Stokes and Anti-Stokes) at
frequencies Ws = 20 - Wy and was = 2wy - Wy. Being a parametric process, both energy
conservation and phase matching conditions must be satisfied. Taking into account the
dispersion of the fiber, it is possible to show that the phase mismatch Ak between the
two waves (we set the pump power equal to twice the probe power P, = 2Py, i.e. the

nonlinear contribution to the phase mismatch is equal to zero) is given by

2
Aky = D()\ﬁCZT[(ﬁ—?) (4.11)
This phase mismatch is manifest as a spatial intensity oscillation of period Aspin both
the Stokes and Anti-Stokes waves, that can be observed as a temporal oscillation with
frequency vy in the intensity of the Rayleigh backscattered light. This oscillations is due
to the phase mismatch between the different photons, and the frequency in oscillation
is given by ,

Fs= /%5 = %l_([ =cD(A1) (%) (4.12)
So if we measure the spatial frequency we are measuring in effect D(A1) with a spatial
resolution given by As. Of course this oscillation can not be observed in forward direc-
tion but only in backscattering. In fact here the signal will fluctuate in intensity with a

temporal frequency related to the spatial one by
F(t) = --Fs(2) (4.13)

Note that the spatial frequency is a function of the position along the fiber due to pos-
sible changes in the D parameter. This spatial frequency will reflect in a temporal
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dependence of the temporal frequency F (t). So the frequency in the intensity modu-
lation at time t = 2nz/c will give us information about the D at the position z in the
fiber.

So finally combining the equation we have that the dispersion parameter D is equal
to

2n [\ 2 2n
The estimated power can be calculated equal to
Ps(z) =8 M (e P 2P sir? [ 252 razd—4a2 (4.15)
s\2) =S| peaz Aorr 1) 2 > :

where z is the length occupied by a pulse, and R is the backscattering coefficient. Re-
garding the nonlinear contribution to the phase mismatch this is usually a fraction of
the linear one. In any case keeping the power of the pump twice the one of the probe
is easy to show that the nonlinear mismatch is always equal to zero.

So measuring the temporal frequency allows one to obtain the value of the disper-
sion D(A1,z) at the pump wavelength A1 and at the position z. Now, it is well known
that single-mode communication fibers have residual birefringence and that the orien-
tation and the magnitude of the birefringence is randomly distributed along the fibers.
This distribution is characterized by the PMD and depends on two parameters: on the
(mean) local birefringence B and on the coupling length h that gives the distance after
which a considerable amount of power has coupled into the other polarization mode.
If the fiber under test (FUT) does not present a birefringent axis (low values of PMD
and coupling length), the pump and probe will travel together remaining parallel to
each other for the entire length of the fiber. It follows that the positions along the fiber
where the condition of phase matching is satisfied are independent of the entering state
of polarization of the pump and of the probe. In the presence of relative large values
of PMD the evolution of the SOP for pump and probe is given by [42]

,3M< AT >2

<s‘f“t$“t>:§f§;exp(—m s 3 ) (4.16)

For what concerns the efficiency n of the FWM process, this is given by

1+$S) (4.17)

NI =

rl:
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where S1 and S, represents the Stokes vectors of the state of polarization (SOP) of the
pump and probe respectively. For the case of low values of coupling length, even if
the PMD results quite high, the net effect consist in a different evolution of pump and
probe along the fiber. But due to the short autocorrelation length (i.e. high polariza-
tion scrambling) the contribution to the phase mismatch due to the waveguide term is
negligible and the phase mismatch will still result to be equal to Eq. (4.11). Only the
efficiency n, will change making in some cases difficult to find the position of zero mis-
match. But the position will result to be only slightly dependent on the entry state of
polarization. However, the situation becomes more complicated, when there are large
values of coupling length along the fiber. The asimmetry in the fiber and the concomi-
tant different evolution for pump and probe due to the PMD (Eq. (4.16)) will give rise
to polarization dependent effects. In fact depending on the SOP entry angle the two
waves will travel along different paths but in this case due to the long coupling length
the scrambling is not high enough to make statistically equal the presence of both of
them along the birefringence axis with the waveguide phase matching term resulting
different from zero. The situation is similar to what is happening in a PM fiber in which
two birefringent axis are defined. If one of the two waves will match one of the two
axis will travel along it for the entire length of the fiber acquiring a certain phase. The
other instead will start to rotate. So the phase matching condition will result to be a
function of the entry state of polarization. This will reflect in a SOP dependence of the
dispersion maps obtained for this kind of fibers.

4.2.3 Experiment

The experimental setup for the measurements is shown in Fig. The light source
consists of two tunable distributed feedback lasers (DFB) in cw mode. The SOP of the
two waves is controlled via two polarization controllers (PC1, PC2), and made equal
in order to maximize FWM (Eq. (4.17)). The two waves are then amplified by a SOA
modulated with a frequency of 4 kHz and a pulse width of 30 nsec and then amplified
again by an EDFA. Typical values in the range 150-1500 mW are used. The SOP of both
the waves is then controlled at the same time by way of a polarization controller (PC3)
and the light is then launched into the fiber under test (FUT). The circulator sends the
two pulses into the FUT, and collects the Rayleigh backscattered signal to an OTDR
after passing through a tunable filter (40 dB attenuation @ 2 nm). The oscillation in the
power at the Stokes (or Anti-Stokes) wavelength are monitored in backscattering with
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Fiber | Length (m) | Ap (nm) | Coupling Length (m) | PMD (ps/v'km)

NIST 9700 1547.8 0.53 0.02
AC-2 7400 1545 0.65 0.19

Table 4.1: Parameters for the different fibers.

an OTDR and the dispersion maps are elaborated by a personal computer.

4.2.4 Results

We made measurements on different fibers. The data for two of them are shown in
Table

First, we map the chromatic dispersion for two different DSF fibers, one with a
small and one with a large polarization coupling length h (determined from (polar-
ization sensitive) Optical Frequency Domain Reflectometer traces). In both fibers, the
overall PMD is small (;0.2 ps/km). Fig. 4.5 shows the Stokes signal power for the low
coupling length fiber for different input SOPs into the FUT (pump and seed input po-
larizations are kept identical). No significant dependence of the results on the input
polarization is expected for such a fiber, as the pump and seed signals have no time to
acquire significantly different phases due to the frequent coupling among the fast and
slow axes. Indeed, the figure demonstrates that only small changes in the amplitudes,
but not in the locations of the Stokes signal maxima are obtained. For completeness,
inset (a) shows the chromatic dispersion map as obtained from entering the fiber from
both ends (one of the profiles is inverted), demonstrating the good reproducibility and
accuracy of the results. Inset (b) gives the overall dispersion at different wavelengths,
where the open circles were obtained from summing up the FWM dispersion map,
and the bold line from an alternative method. Good agreement between the two meth-
ods can be observed. Fig. 4.6/ shows the results for the long coupling length fiber. As
can be seen, the maxima locations of the Stokes signal vary strongly due to the addi-
tional phase from PMD, which depends on the input polarization states. In fact, the
chromatic dispersion map can no longer be estimated from a single trace alone, as the
frequency at a given location depends on the (arbitrary) relative polarization states at
that location for that input SOP. To remove this arbitrary component, different profiles,
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Figure 4.5: Signal intensity profile for the fiber NIST. In the inset is shown the chromatic dispersion
profile taken at both FUT entry and the integrated value of the chromatic dispersion.

each corresponding to a different input SOP, have to be taken. For a given location, the
mean value of GVD should then be retained. Note that averaging over all the possible
SOP during an acquisition (by using a polarization scrambler, bold line in the inset of
Fig.3) will not give a meaningful result, as it simply corresponds to a sum of the dif-
ferent individual traces giving -due to arbitrary positions of the different maxima - a
curve that is basically flat.

4.2.5 Conclusions

In conclusion in this section we have shown that mapping of chromatic dispersion in
DCEF fibers, is strongly affected by the coupling length value present in them. The pos-
sibility to obtain significative mapping still exist for fibers of this kind and is allowed
by way of collecting different signal profiles at different entry SOP.
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4.3 Distributed Measurements of no/Aqs+ in DSF fibers

In this section we report on distributed measurements of nonlinear coefficientny/ Aetf along
dispersion shifted fiber by way of an OTDR-like method based on four wave mixing
effect.

4.3.1 Introduction

Because of the long distances and high powers reached nowadays in optical fibers, op-
tical nonlinearities due to changes in the refractive index (optical Kerr effect) start to
play a significant role. Among them, self-phase modulation (SPM), cross-phase modu-
lation (XPM), and four-wave mixing (FWM) are the most important. The magnitudes
of these effects depend on the ratio np/Aett , where ny is the nonlinear refractive in-
dex of the fiber and Aetr the effective area of the lightmode. It is therefore important
to have a simple and accurate method for the determination of this ratio. Different
methods, based on SPM or XPM phase shift detection using interferometric [23] and
non-interferometric [5] schemes have been proposed (see Section 2). But all these mea-
surements techniques give only the integrated value of the nonlinear coefficient over
the entire length of the fiber under test (FUT). The only way to obtain a map of the
ny/Aett over the entire fiber length consist in performing a destructive fiber-cutting
measurement. In this section, we propose a new method based on an OTDR-like tech-
nique firstly proposed by Mollenauer et al. [29, 31] to perform distributed measure-
ments of chromatic dispersion along a fiber. The method allow us to obtain longitudi-
nal mapping of the nonlinear coefficient along a 10 km DSF fiber.

4.3.2 Theory

When two optical beams at frequencies w; and wy (W | wy) propagate along a fiber,
due to the nonlinearity of the fiber, they interact by way of FWM generating two new
signals (Stokes and Anti-Stokes) at frequencies ws and was

Ws = 2001 — Wy Was = 20p — Wy

The waves at Ws, w1 , and wp are called idler, pump, and signal respectively. Being a
parametric process, it is required not only energy conservation but even phase match-

ing conditions have to be satisfied. Taking into account both the dispersion of the fiber
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and the nonlinear contribution to the phase matching condition, it is possible to show

that the phase mismatch Ak between the two waves is given by

2
Ak =A +AnL = DCZT[(AT)\> +y(2PL—P,) (4.18)

This phase mismatch will reflects itself in a spatial intensity oscillation with period Asp
in both the Stokes and Anti-Stokes waves, that can be observed as a temporal oscilla-

tion with frequency nt in the intensity of the Rayleigh backscattered light [43]

2
If P = 2P the nonlinear term is vanishing and a measurement of the local frequency
will allow to have information on the local value of the dispersion all along the fiber
length. Once retrieved a map for the chromatic dispersion D(z,1) and considering a
ratio for the pump and probe power different from 2, we can in principle retrieve in-
formations on the local value of the g(z) parameter (i.e. np/Ae¢+ ). Unfortunately local
variations due to the coupling length will not allow to obtain good and reproducible
map of the nonlinear coefficient. An alternative way, that makes the measurements
much more significative, consist in performing two different measurements keeping
the ratio P1 /P constant but attenuating it of the same factor a the power of both pump
and probe at the entry of the FUT. It follows that the difference between the temporal
frequency for the two measurements is indipendent of the chromatic dispersion (the
linear term that appears in Eq. is equal for both the cases, so it cancels out), but
contains instead a dependence in Y.
l-a

N 0P —py) == (4.20)

Avy :vt(a = 1) —vt(a = G) = anm

That allows us to obtain a map of the nonlinear coefficient along the FUT. To note that
typical variations of the n along the fiber, will not contribute significatively to the Av;

term.
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4.4 Experimental

The experimental setup for the measurements is shown in Fig. The light source
consists of two tunable distributed feedback lasers (DFB) in cw mode. The state of
polarization of the two waves is controlled by way of a polarization controller and
monitored by a polarimeter, and made equal in order to maximize FWM process along
the FUT. The two waves are then amplified by a SOA modulated with a frequency of
4 kHz and a pulse width of 30 nsec and then amplified again by an EDFA. Typical
values in the range 150-1500 mW are used. The circulator sends the two pulses into the
FUT, and collects the Rayleigh backscattered signal to an OTDR after passing through
a tunable filter (40 dB attenuation @ 2 nm). The oscillation in the power at the Stokes
(or Anti-Stokes) wavelength are monitored in backscattering with an OTDR and the
dispersion maps are elaborated by a personal computer. The measurements were then
performed in the following way: pump and probe were tuned at different wavelengths
(A2 = 1541.3 nm, lambda = 1535.0 nm) and the power was setted at 1150 mW for both
of them (P1 = P2) and at 115 mW for the attenuated measurement (a=10).

441 Results

A typical signal profile for the fiber under test is shown in Fig.

In the inset is shown the CD profile at 1541.3 nm. Measurements at the two different
powers are reported in Fig. In the inset is shown a simulation using Aef f =39 pm?,
ny = 2.6 1071%W~1 for the two different powers. The data shown in the figure and in
the inset match quite good. From the experimental values using Eq. it is possible
to determine the longitudinal distribution of the nonlinear coefficient np/Aeff . This
is shown in the inset of Fig. The fluctuations are due to the inaccuracy in the
determination of the position of the signal peaks. This can be improved averaging the

total number of measurements and using a fitting algorithm.

4.4.2 Conclusion

In this section we reported on distributed measurements of nonlinear coefficient
ny/Aett along dispersion shifted fiber by way of an OTDR-like method based on four

wave mixing effect.
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Chapter 5
Different contributions

5.1 Photon Counting Near Field Scanning Optical Mi-
croscopy at 1.55 pm

In this section we present a a new system combining near-field scanning optical mi-
croscopy (NSOM) with single photon detection operating at the wavelength of 1.55
um The microscope was used in order to image the splice region between a standard
telecom and an Erbium doped fiber. The excellent sensitivity also allowed to detect
the Rayleigh scattered light of a standard fiber coming out laterally through the fiber
cladding.

5.1.1 Introduction

Near-field scanning optical microscopy (NSOM) allows to obtain spatial resolutions
below the classical diffraction limit [44]. Over the last years, this intriguing possibility
has been exploited for numerous applications [44] 45, 46, 47,48),149| 50, 51].

In order to increase the sensitivity of the NSOM, photon counting detectors are
employed. So far, the use of silicon avalanche photodiodes (APD) operated in the so
called Geiger mode has been demonstrated. It is well known that these silicon APDs
have very good performances [52]: quantum efficiencies of about 60%, dark count rates
below 100 counts per second, and a sub nanosecond timing resolution. But silicon is
not sensitive in the near infrared, and other detector materials have to be employed for
photon counting in that important wavelength region. Due to their sensitivity from 0.7
to 1.8 um, Ge APD are potential candidates. However, in order to have a reasonably

low dark count rate, these detectors must be cooled to 77 K, reducing their cut-off

91



Chapter 5 Different contributions 92

wavelength to below 1.45 pum. This problematic is absent in InGaAs/InP photodiodes.
Although this 1.55 pm photon counters have been used for several years in quantum
optics experiments (e.g. quantum cryptography [53]), they are not yet exploited for
NSOM. Using this technique, we demonstrate in this section a photon counting NSOM
operating at 1.55 pm. To illustrate its functionality we give some examples relevant for
telecommunications. Note however that other interesting applications can be found in
the biological field.

The section is structured as follows. In Subsection we describe the setup of
our photon counting NSOM with emphasis on the photon counting detection scheme
at 1.55 pm. In Subsection we first test our NSOM by measuring the optical mode
tield out of a single mode fiber and by comparing it with a standard measurement
method. We then monitor the splice between an Erbium doped and a standard single
mode fiber, from which an upper limit for the thermal diffusion length was found. The
excellent sensitivity of our NSOM even allowed to detect Rayleigh light scattered out
laterally from a piece of standard single mode fiber.

5.1.2 Description of the 1550 nm photon-counting NSOM

The set-up consists of two main parts: the NSOM apparatus and the detection scheme.

The NSOM system is home built and consists of a Physik Instrumente piezo servo-
controlled xyz-scanner (100*100*10 pm) mounted on a Nikon TE300 inverted micro-
scope usually used in transmission mode to characterize the fluorescence of biological
samples. For the applications discussed in this section, the light coming out from the
fiber sample under test is collected by a tapered optical fiber obtained by chemical
etching so that the aperture diameter is below 100 nm. To ensure a constant, small tip-
sample distance during the scan, we use the shear-force detection technique originally
proposed by Karrai et al. [54]. It is based on a mechanically excited tuning fork of
well-defined resonant frequency. The optical fiber tip glued to one arm of the tuning
fork protrudes less than 1 mm and vibrates parallel to the sample surface with an os-
cillation amplitude of about 10 nm. Approaching the sample surface, the decrease of
the piezoelectric signal amplitude is used to maintain the tip-sample distance at about
5 nm with an electronic feedback loop controlling the z-direction of the scanner.

The heart-piece of the detection scheme is obviously the 1.55 pm photon-counting
detector. Due to efficiency and signal-to-noise issues, InGaAs/InP Avalanche Photodi-
odes (APD) are the only viable candidates for photon counting at 1.55 pm today [55].



Chapter 5 Different contributions 93

In the following, we will therefore concentrate on this type of detectors. Before en-
tering the details, let us briefly recapitulate the working principle of photon-counting.
If an APD is biased above the breakdown voltage (Geiger mode), every time a sin-
gle photon is absorbed by the photodiode, it will trigger an avalanche generating a
macroscopic current pulse. The recording of this current pulse with a suitable elec-
tronic discriminator circuit indicates the presence of a photon. To link the recorded
photon counts to different power levels, many ‘real” events have to be recorded so that
erroneous (i.e. noise) counts don't falsify the measurement. Further, the probability to
detect a single photon in a given time interval has to be much smaller than 1, other-
wise the corresponding “saturation” of the detector corrupts the obtained information
After a detection, the APD must be re-initialized to rapidly allow the measurement of
other photons arriving. This is done by quenching the avalanche, which can be done
actively or passively [56]. If -as in our experiments- the time of arrival of the photons
on the APD is known, one typically uses the so called gated mode. Here, the APD
bias voltage is raised above its breakdown voltage only during a short gate period,
and consequently only during this time interval photons can be measured. At all other
times, the APD is operated in standard mode with a reverse bias voltage slightly below
the breakdown, inhibiting avalanche formation. The main advantage of gated mode
operation is that the number of erroneous counts is very low [55]. To further limit the
noise, relatively low repetition rates (< MHz) and durations (nsec) for the gate and
cooling of the APD (200-300 K) are typically employed.

The choice of the APD to be used as a detector in our setup was a tedious process,
as detection efficiency and dark count probability vary from model to model and de-
pend on parameters as gate voltage or APD temperature. Different InGaAs/InP APD
from different companies were therefore characterized [57] in order to find the best
performances. These results are summarized in Fig. where the dark count proba-
bility is given as a function of the detection efficiency at different temperatures and for
different InGaAs/InP APD’s. The figure demonstrates that the quantum efficiency can
be as large as 30% with a noise probability of 1072 to 10~# counts per gate of 2.4 ns.
The APD we finally used for the NSOM is the one from EG&G (see Fig.[5.T), cooled to
-40° C. The detection efficiency was set to 15%, leading to a noise probability of 103
counts per 2.4 ns. The gate repetition rate employed in our experiments is 10 kHz, with
a gate duration of 40 ns. The number of dark counts was found to be below 250 Hz.
From these numbers a sensitivity of 10~2 photon per gate can be estimated. Note that
the gate can be reduced to as little as 180 ps [55], allowing for time resolved studies.
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Figure 5.1: Dark count probability as a function of the detection efficiency at 1.55 pm for different
InGaAs/InP APD temperatures and models [from Ref.[57]].

The set-up of the driving electronics for the APD is shown schematically in Fig.
The pulse generator emits at 10 kHz and acts as the timebase of the system. These
pulses trigger on one hand the optical source used for the sampling illumination, and
on the other hand the voltage generator producing the gate pulse of 4V/40ns. The
detection window can be adjusted with respect to the arrival of the photons via a delay
generator inserted in front of the voltage generator. In addition to the gate pulse, a
continuous voltage offset is put on the APD to optimize both its biasing outside the
detection window and the level of the gate voltage. The avalanche signal is detected
and registered with the use of discriminator electronics and a counter. A picture of the
InGaAs/InP APD module used for the photon-counting NSOM is shown in Fig.
It includes the Peltier cooling and the detection electronics. The optical source we
use in our experiments was a distributed feedback laser (DFB) emitting at 1.559 pm.
The pulse duration was set to 100 ns and therefore exceeds the gate duration of 40
ns, creating a quasi-cw illumination. To obtain sufficiently high power levels for the
sample illumination, the pulses were consecutively amplified by an Erbium doped
fiber amplifier (EDFA) with a small signal gain of 40 dB and a saturated output power
of 23 dBm.
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